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Summary of Conclusions 

 Although KLM results were different across MUCs, there was 

surprising consistency in task time across the 3 EHR products  

• Problem List had the longest execution time and greatest 

variability across EHRs 

Results 

Next Steps 
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• There is a lack of objective and reliable measures of user 

performance for common clinical tasks in EHRs 

• Keystroke Level Models (KLM) can be used to analyze work 

flows and identify factors for work flow optimization, and have 

been demonstrated to accurately predict skilled user 

performance time [2, 3] 
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•  Compare and analyze clinical task work flows in different EHRs 

•  Optimize the work flow according KLM to reduce task 

execution time  

•  Collecting data across larger samples will allow creation of 

benchmarks for NIST MUCs 

Method 

• Measure skilled user performance time for tasks within NIST 

meaningful use cases (MUCs) [4] 

• Establish benchmarks for MUC time 

• Compare and analyze work flows for MUCs across EHRs 

• CogTool [5], a KLM tool, was used to analyze 6 MUCs (e.g., 

ePrescribing, smoking status) across 3 EHRs  

• Task execution times were predicted by CogTool, and 

resulting times were compared across EHRs 

• Time for each physical operator (see Figure 2) was analyzed 

for variability 

• Recommendations for improving task efficiency were 

generated 
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Figure 1. Predicted task execution time for 6 

MU objectives across 3 EHRs 

1. Smelcer JB, Miller-Jacobs H, Kantrovich L. Usability of Electronic 

Medical Records. Journal of Usability Studies.2009;4:70-84. 

2. John BE, Suzuki S. Toward cognitive modeling for predicting usability. 

To appear in HCI international 2009. 

3. John BE. Using predictive human performance models to inspire and 

support UI design recommendations. Proceeding of ACM CHI’11 session 

on predicting & modeling human behaviors 2011. 

4. http://www.nist.gov/index.html  (accessed Oct 14th, 2011). 

5. http://cogtool.hcii.cs.cmu.edu/ (accessed Feb 15th, 2011). 

Figure 2. Time for  physical operators in 

Recording Problem List across 3 EHRs 
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Fig.5. Problem List  Recording Structure for EHR1 

“Problem List” 

Tab: Click “Add 

Diagnosis”  

 

“Patient Diagnosis” pop-out window:  

Left Click entry field; Type “tia”  

 

Left Click “search” 

 

Left Click the correct diagnosis from pop-up search result box 

 

Left Click the “Acute” status from the pull down list 

 

Left Click “Save” 

 

“Problem List” 

Tab: Click “Add 

Diagnosis”  

 

Patient 

Dashboard: 

 click “medical 

records” 

Medical Records Webpage: 

Maximize the screen, click 

“Problem List” 

 

Portion of work flow for recording problem list for EHR1 

Continues 
For additional information, please contact  

SHARPC@uth.tmc.edu  

http://www.nist.gov/index.html
http://www.nist.gov/index.html
http://cogtool.hcii.cs.cmu.edu/
mailto:SHARPC@uth.tmc.edu

