dmGWAS: dense module searching for genome-wide association studies
in protein-protein interaction network

Peilin Jial2, Siyuan Zheng! and Zhongming Zhao123

1Department of Biomedical Informatics, 2Department of Psychiatry, 3Vanderbilt-Ingram Cancer
Center, Vanderbilt University, Nashville, TN 37232, USA

June 1, 2010

1. Introduction

Genome-wide association studies (GWAS) have greatly expanded our knowledge of common diseases
by discovering many susceptibility common variants. Several gene-set based methods that are
complementary to the typical single marker / gene analysis have recently been applied to GWAS
datasets to detect the combined effect of multiple variants within a pathway or functional group.
These methods include Gene Set Enrichment Analysis (GSEA), which was adapted from microarray
expression data analysis (Wang et al., 2007; Perry et al., 2009), SNP ratio test (O'Dushlaine et al.,
2009), and hypergeometric test. One of the potential issues of these methods is that by sorting genes
into classical pathways or functional categories the results might be much limited to a priori
knowledge (e.g., pre-defined gene groups) in certain cases and make it difficult or ineffective for
identifying a meaningful combination of genes (Ruano et al, 2010). Another limitation is the
incomplete annotations of pathways or GO annotations.

dmGWAS is designed to identify significant protein-protein interaction (PPI) modules and, from
which, the candidate genes for complex diseases by an integrative analysis of GWAS dataset(s) and
PPI network. It implements a dense module searching method previously developed for gene
expression data analysis (Ideker et al., 2002). We adapted the method specifically for GWAS datasets,
including data preparation, integration, searching, and validation in GWAS permutation data.
Specifically, we proposed two strategies to select modules for single GWAS and multiple GWAS
datasets. In the later case, additional GWAS dataset(s) can be used for evaluation/validation of the
modules identified by the primary (discovery) GWAS dataset.

Compared with pathway-based approaches, this method introduces flexibility in defining a gene set
and can effectively utilize local PPI information. Our applications of dmGWAS in schizophrenia and
breast cancer have shown that dmGWAS is sensitive and effective in identifying candidate modules
and genes for the disease (Jia et al.). Moreover, the functions for GWAS data preparation
implemented in dmGWAS are applicable for other cases of gene set based analysis, such as SNP-gene
mapping and gene-based association computation.

2. Methods and Implementation

2.1 Workflow

dmGWAS implements several comprehensive methods for the analysis of GWAS and network data.
The workflow of dmGWAS is illustrated in Fig. 1 and is described as follows.

Step 1. SNP-gene mapping: The association results from GWA studies (e.g., assoc file from PLINK)
are used as the input of dmGWAS. SNPs are mapped to genes according to an annotation file
containing SNP-gene coordinate information.

Step 2. Assigning statistical values for SNPs to genes: A summary P value for each gene is
computed in this step. Several options are available, including using the most significant SNP, by the
Simes method (Chen et al,, 2006), by Fisher’s method, or using the smallest gene-wise FDR value
(Peng et al, 2010).

Step 3. Dense module searching: The function dms is executed to perform the following analyses:
(1) constructing a node-weighted PPI network, (2) performing dense module searching and
generating simulation data from the random networks, (3) normalizing module scores using the
simulation data, (4) removing unqualified modules, and (5) ranking the generated modules
according to their significance values. The primary results are generated in this step.

Step 4. Module selection: For multiple GWAS datasets, a strategy to mutually evaluate two GWAS
datasets is implemented, i.e., using one as the discovery dataset and the other as the evaluation
dataset, and vice versa. Thus, the modules significant in both GWAS datasets can be selected as the
candidate modules. This strategy is strongly recommended by the authors of dmGWAS since it
provides complementary analysis for multiple GWAS datasets. Alternatively, if a single GWAS dataset
is under investigation a function is provided to select the top ranked modules.

Step 5. Evaluation by permutation: The selected modules are further evaluated using the
permutation data based on the original GWAS dataset(s).

Finally, the selected modules are combined to construct a subnetwork specific for the disease under
investigation. It can be graphically displayed in the environment of R.

The input and output for each function in each step are straightforward, and data preparation is easy.
Thus, it is easy for the users to incorporate their own data or to integrate some functions in dmGWAS
into their own programs.

2.2 Methodology
Dense module searching algorithm
The score for a module is defined as

Zy =

24

Jk
where k is the number of genes in the module and z; is transferred from P value according to

Z, = ot (1— o) (@ denotes the inverse normal distribution function.) (Ideker et al., 2002).
Module score is further normalized by
_ Zy —mean(Zy, (7))
— sd(Zp()
where Z,(m) is generated by randomly selecting the same number of genes in a module from the
whole network 100,000 times.

N

Searching strategy

The following steps perform greedy searching iteratively using each gene in the network as a seed
gene.

PPI network GWAS data /
/__Protein-—--pairs SNP--Chr--P
Option 1. Affy annotation data

Option 2. data provided by the user
Gene-SNP
mapping file
m ‘ 1. SNP-gene mapping

/ gene.map (data.frame) /
1:n between gene and SNP

|
PCombine

'

/ gene.map (data.frame) /

2. combining multiple SNPs for

1:1 between gene and SNP e
B Y \
S dms() |
=
3 J —
§ res.Jist (list) . Case 1: one GWAS data -
= Gene weight simpleChoose()
o .
2 Module list = 5
@ Module score (Zm) : b+
5 Normalized Module score (ZN) .| Case 2: multiple GWAS data - @
A dualEval() 2
e y—————- 3
- - E
statResults() / Moduleilst (list) /Q— <
e . _ lmpemytation) | L
L Y
o & Ly /Significant module/
sadorr.s list (list)
o P i RC1
-y Y
& A) _ ~*— moduleChoose()
\“’\u g‘" . pnaaz mam ¥
- | 5. results presentation

Fig. 1. Flowchart of dnGWAS. PPI: protein-protein interaction. Chr : chromosome.

Step 1: A seed module is assigned. In the beginning, the seed module contains only the seed gene. Z,
is computed for the current seed module.

Step 2: Identify neighborhood interactors, which are defined as nodes whose shortest path to any
node in the module is shorter or equal to a pre-defined distance d (e.g., d = 2).

Step 3: Examine the neighborhood genes defined in step 2 and find the genes that can generate the
maximum increment of Z,. Nodes will be added if the increment is greater than Z,xr, where r is the
rate of proportion increment. That is, the expanded module has a score Z.; greater than Z,,x(1+r).

Step 4: Repeat steps 1-3 until adding any neighborhood nodes cannot yield an increment that is
greater than Z,xr.

We suggest that modules with less than 5 genes not be considered. When multiple modules have the
same component genes but are generated by different seed genes, only one is kept. In our following
analysis, we used d = 2 and r = 0.1. The results using other d and r values are described in Box 1.

3. Example

Step 1. SNP-gene mapping

Input file 1 - the association result file from GWAS. The direct output file from PLINK, .assoc file, is
workable. If you use other software, make sure the file contains two columns: SNPs and their P
values.

Input file 2 - annotation file. To map SNPs to genes, a file containing the coordinate information of
genes and SNPs needs to be prepared in advance. The file has to be space or tab-delimited and
contain SNP ID, the distance of the SNP to the gene, and gene name. A header line is required to

indicate the columns for "SNP", "Dist", and "Gene". For example,

$ head -5 GenomeWideSNP_5.na30.annot.AffyID

SNP Dist Gene
AFFX-SNP_10000979 O ABCAS8
AFFX-SNP_10009702 282266 RPS18
AFFX-SNP_10009702 73369 HS3ST3B1
AFFX-SNP_10009702 76596 HS3ST3B1

Users can do this by using PLINK (e.g., --gene-report) and format it to a file containing the three
columns.

Alternatively, we provide two annotation files for two Affymetrix chips, which can be downloaded
from our website. They are the annotation files from Affymatrix website for their most popular
arrays: Affymetrix Genome-Wide Human SNP Array 5.0 (GenomeWideSNP_5.na30.annot.csv.zip)
and Affymetrix Genome-Wide Human SNP Array 6.0 (GenomeWideSNP_6.na30.annot.csv.zip). Our
annotation files online contain only the necessary columns for the use of dmGWAS. Annotation data
for other platforms (e.g., [llumina) will be available soon.

To map SNPs in the GWAS data to the corresponding genes:

> gene.map=SNP2Gene.match(assoc.file="gwas.assoc",
snp2gene.file="GenomeWideSNP_5.na30.annot.AffyID", boundary=20)

where boundary is the distance a SNP is included for a gene, e.g., boundary=20 means 20kb border is
added to the start and end of each gene listed in the gene file.

> head(gene.map,3)

Gene SNP P
1 MAGI2 SNP_A-1780270 0.7350
2 UQCC SNP_A-1780274 0.2165
3 CAPS2 SNP_A-1780277 0.6848

Step 2. Assign P values of SNPs to genes

Since there are multiple SNPs for each gene and dmGWAS requires one summary P value for a gene,
we implement several methods in dmGWAS to combine multiple SNPs for a gene:

1) using the most significant SNP (method="smallest");

2) the Simes method (Chen et al,, 2006) (method="simes");

3) Fisher’s method (method="fisher");

4) using the smallest gene-wise FDR value (Peng et al., 2010) (method="gwbon").

For example,

> gene2weight = PCombine(gene.map, method="smallest")

> head(gene2weight, 3)
gene weight

A2BP1 A2BP1 0.0003139

A2M A2M 0.8806000

A2ML1 A2ML1 0.1080000

The object, gene2weight, is simply an object of data.frame with two columns, gene and weight (P
value). If the users prefer their own way of assigning weight to genes, they can provide a data frame
that contains the same information as is returned from SNP2Gene.match, i.e., a data frame
containing two columns "gene" and "weight". Note that the weight must be P values since our
algorithm takes P value as input and transfers it to Z-score.

Step 3. Dense module searching:

A PPI network is needed in the format of protein interaction pair. For example,

> network = read.table("network.txt")
> head(network, 3)

V1 V2
1 TAF4 SAP130
2 HDAC3 HDAC1
3 TAF1 TAF15

Next, one single function, dms, performs all the analysis necessary for dense module searching. The
detail of the algorithm can be found in our manuscript (please see the References section on our web
site). Four input parameters are necessary for the execution of this function:

gene2weight: generated in step 2.

network: pair-wise PPI data.

d: defines searching area in the network topology, i.e., within neighborhood genes that are
defined as those with the shortest path to any node in the module less than or equal to d.

r: the cutoff for incensement during module expanding process. The score improvement of each
step is required as passing Zm+; > Znx(1+r) for the inclusion of any neighborhood genes, where
Zm+1 is the module score by recruiting a neighborhood node.

Box 1 explains how to choose values for d and r. The command line to execute dms is:

> res.list = dms(network, gene2weight, d=2, r=0.1)

The resultant object, res.list, contains all the results from the searching process, including the node-
weighted network used for searching, the resultant dense modules and their component genes, the
module score matrix containing Z,, and Zy, and the randomization data. A resultant file called
RESULT.RData will also be generated for future recalling.

> names(res.list)

[1] "GWPI" "graph.g.weight” "genesets.clear” "genesets.length.null.dis"”
"genesets.length.null.stat" "zi.matrix" "zi.ordered”

#GWPI, an object of igraph class, is the node-weighted PPI network.

#graph.g.weight, an object of data.frame, contains the gene in GWPI and the weight (z;, transformed
from P).

#genesets.clear, an object of list, contains all the valid modules. The name of each record is the seed
gene.

#genesets.length.null.dis, an object of list, contains the randomization data of for each size of
modules.

#genesets.length.null.stat, an object of list, contains the statistic values of randomization data of for
each size of modules.

#zi.matrix, an object of matrix, contains data for each module: gene (seed gene), Zm (module score),
Zn (normalized module score).

#zi.ordered, ordered matrix of zi.matrix based on Zn.

Box 1. How to choose d and r

In our analyses, d has a marginal effect on the results; thus, it's recommended that d is set as the
default value 2.

The parameter r impedes restriction on the score of the module. When r is small, it imposes loose
restriction during the module expanding process; thus, unrelated nodes with lower z; scores (higher
P values) might be included. On the other hand, when r is large, strict restriction is imposed and only
those nodes with very high z; scores (very low P values) could be included. As a result, it may miss
some informative nodes that have moderate association P values.

In our application in a schizophrenia GWAS dataset, we compared the performance using four r
values (0.05, 0.1, 0.15, and 0.2). Fig. 2 shows the results. It can be seen that when r is small, the size of
modules tends to be large (e.g., when r=0.05, average number of module genes is 19.1). When ris
large, the size of the modules becomes small (e.g., when r=0.2, it is 6.6, slightly larger than our
minimum number of genes for a module, 5). Our results using r=0.1 worked well and sensitively
(average number of genes is 11.1). However, it is recommended that the users try different r values
on their own data to decide the most appropriate value.

o
o
RO o
o
8 - | °
fak] T @
=] 1
‘w ! [s]
@ ! o] o
= 1
T wr | [
o = T
E =] | o
i o
. T o
o
S 4 . | °
a ’ .
)] |
e o o R i
T T T T
005 010 015 020

Fig. 2. Comparison of module size with different r values in dense module searching using
schizophrenia GAIN GWAS dataset.

To have an overview of the generated modules, the function statResults is provided to briefly show
the network features of top ranked modules (Fig. 3):

> statResults(res.list, top=100)

This function walks along the module list (i.e., walks along the matrix res.list$zi.ordered from top),
ranked by their normalized score, Zy, from the highest to the lowest, and add one module at each step
to generate a combined subnetwork. In each step, the number of genes involved in the modules,
clustering coefficient of the subnetwork, average shortest path, and average degree are plotted to
give an overview of the top ranked modules.

No. of genes in total Clustering coefficient

L
7] o
(]
o — -
A =
=
2] £ =-
5 8- N
— =] &
s 8- 584"
o _| o @
= o
o _
o o
S |
T T T T T T L=T T T T T T
0 20 40 60 80 100 0 20 40 &0 a0 100
Index of modules Index of modules
Average shortest path Average degree
oo
o o
2
= o
= (o]
[= N — €
W 2 =
- @
w on o
@ = o
g _ 5
o LT o] 5
x g o
™| & o | f
> — (=]
T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 &0 a0 100
Index of modules Index of modules

Fig. 3. Network features of the top ranked modules.

Step 4. Module selection

Modules are ranked and selected by Zy. Theoretically, and also based on our application, each gene
has a local module; thus, there may be thousands of modules generated with extensive overlap
between modules because of the complex structure of the human PPI network. We propose two
strategies for module selection.

Strategy 1. Module selection for single GWAS dataset:

> selected = simpleChoose(res.list, top=100, plot=T) #for single GWAS dataset

Strategy 2. Module selection for multiple GWAS datasets:

> zod.res =dualEval(resfilel, resfile2) #for two GWAS dataset
> names(zod.res)

[1] "zod" "'zod.sig"
> head(zod.res$zod.sig) #the significant modules
gene zi.dis za.dis nominalP.dis zi.eval za.eval nominalP.eval

4293 ATP2B2 10.25564 6.882083 0 8.993793 3.090531 0.00076
7234 GRID1 10.18871 6.809900 0 8.950589 3.047315 0.00085
1824 FNBP1 10.13180 6.748524 0 8.825186 2.921878 0.00121
1928 GRIN2A 10.11515 6.730566 0 8.612028 2.708662 0.00287
1555 GUCY1A2 10.07223 6.684281 0 8.655341 2.751987 0.00253
4052 NRXN3 10.30150 6.673032 0 9.801202 3.564755 0.00012

where resfilel and resfile2 are generated independently using dms for dense module searching. In
dualEval, resfilel is used as discovery dataset and resfileZ is used as evaluation dataset.

Alternatively, the following function is provided for users' convenience so that modules can be
selected by a user-specified seed gene list:

4

> selected = moduleChoose(seedgenes, res.list, plot=T) # choose modules by user-specified "seed gene"
list

Step 5. Evaluation by permutation

Modules generated in the above steps need to be validated by permutation of the original GWAS
dataset. Permutation data can be generated using PLINK; thus, they are in the same format as being
used in the real case. Each round of permutation will generate a file. All files are required to be saved
in the same folder.

The selected modules will then be subjected to permutation data for testing associations with the
disease of interest.

> module.list = res.list$genesets.clear[1:10] #an example to show how to get the list of modules
> res = zn.permutation(module.list, geneZ2snp, geneZsnp.method= "smallest", original file,
permutation.dir)

where original file is the location of the original assoc file and permutation.dir saves all the
permutation files. The other parameters, geneZsnp and geneZsnp.method, need to be the same as used
in steps 1 and 2.

Both the empirical P values and the module scores computed by permutation data are returned to
res:

> names(res)
[1] “Zn.EmpiricalP" "Zn.Permutation”

> head(res$Zn.EmpiricalP)

Seed Zm EmpiricalP
1 TAF4 0.108389063519163
2 HDAC3 0.0969500793246838
3 TAF1 0.146814408612484
4 HSP90OAA1l 0.110336728792522
5 L3MBTL2 0.184730745613557
6 FGF3 0.138878891433732

[cNeoNoNeNoNo)

Finally, use the function moduleChoose to combine the significant modules and show the resulting
graph. A resulting graph is shown in Fig. 4.

> subnetwork=moduleChoose(zod.res$zod.sig[,1], res.list, plot=T)

DSCAMLI1

@
SMARCADI
MAGI2
hgom POLR2B
Q
MY.C
MAX
MADIL1
O 8CC
DNM?2
@
AMPI
0 SIANK]1
ABI? @
]
ADAMI9 Rl RPSGIA?
o £9)
©
HLA-DQAL
SYNI? @
]

CTNND2

PDZD2
®

ERBB2IP
@

LRRCI1

RASGRP3
(@)

PRKCE
o

Fig. 4. An example of subnetwork generated by function moduleChoose.

References

Ideker, T. et al. (2002) Discovering regulatory and signalling circuits in molecular interaction

networks. Bioinformatics, 18 Suppl 1, S233-240.

Jia, P. et al. (manuscript in preparation) Discovering combined causal signals from genome-wide
association studies for schizophrenia by network module based approach.
O'Dushlaine, C. et al. (2009) The SNP ratio test: pathway analysis of genome-wide association

datasets. Bioinformatics, 25, 2762-2763.

Perry, J.R. et al. (2009) Interrogating type 2 diabetes genome-wide association data using a biological

pathway-based approach. Diabetes, 58, 1463-1467.

Ruano, D. et al. (2010) Functional gene group analysis reveals a role of synaptic heterotrimeric G

proteins in cognitive ability. Am. J. Hum. Genet,, 86, 113-125.

Wang, K. et al. (2007) Pathway-based approaches for analysis of genomewide association studies.

Am. J. Hum. Genet,, 81, 1278-1283.

10

