IMPORTANT: This syllabus form should be submitted to OAA (gsbs_academic_affairs@uth.tmc.edu) a week before the start of each semester.

NOTE to STUDENTS: If you need any accommodations related to attending/enrolling in this course, please contact one of the Graduate School's 504 Coordinators, Cheryl Spitzenberger or Natalie Sirisaengtaksin. We ask that you notify GSBS in advance (preferably at least 3 days before the start of the semester) so we can make appropriate arrangements.

Term and Year: Summer 2023

Course Number and Course Title:

GS12 1442: Principles of Experimental Mouse Pathology

Credit Hours: 2

Meeting Location: **GSBS Schissler Library**

Building/Room#: BSRB S3.8351

WebEx/Zoom Link: N/A

Program Required Course: No

Approval Code: **No**

Audit Permitted: Yes

Classes Begin: May 26, 2023

Classes End: July 28, 2023

Final Exam Week: August 4, 2023

Class Meeting Schedule

Day	Time
Fridays	10am-12nn CST

Course Director

Name and Degree: Fernando Benavides, DVM, PhD

Title: **Professor**

Department: Epigenetics and Molecular

Carcinogenesis

Institution: MDACC

Email Address: fbenavid@mdanderson.org

Contact Number: 832-750-0136

Course Co-Director/s: (if any)

Name and Degree: N/A

Title:

Department:

Institution: UTH MDACC

Instructor/s (Use additional page as needed)

1. Mark Bedford, PhD

Institution: MDACC

Email Address: MTBedford@mdanderson.org

2. Manu Sebastian, PhD

Institution: MDACC

Email Address: MMSebastian@mdanderson.org

3. Carlos Perez, PhD

Institution: MDACC

Email Address: CJPerez@mdanderson.org

4. Fernando Benavides, DVM, PhD

Institution: MDACC

Email Address: fbenavid@mdanderson.org

Email Address:

Contact Number:

NOTE: Office hours are available by request. Please email me to arrange a time to meet.

Teaching Assistant: N/A

Course Description:

This 2-credit course is taught during the Summer Semester. A two-hour class will be given on Fridays from 9:00 to 11:00 am at the MD Anderson in Houston (rooms at 50% capacity). The online learning tool Canvas will be used to distribute presentations and reading assignments. Individual lectures will be limited to 45 minutes. All classes will have 10 minutes break after the first lecture. Some classes include a short video demonstration (e.g., microscopy, necropsy, or imaging procedures), peer discussions, and literature review.

Textbook/Supplemental Reading Materials

• N/A

Course Objective/s:

Upon successful completion of this course:

A challenge for the graduate student is to find and apply the best experimental in vivo approach to investigate and solve a research problem. The purpose of this course is to convey fundamental knowledge needed to perform valid and interpretable research using mouse models. The course will feature a diverse group of instructors covering a wide variety of subjects necessary to understand the importance of the appropriate use of mouse models and how to collect and interpret the results. Each instructor has a strong background on the subject presented. A veterinary pathologist and a veterinary mouse geneticist are included as instructors.

Specific Learning Objectives:

- 1. Students will have learned the basic concepts of mouse biology, embryology, and genetics needed to design in vivo studies.
- 2. Students will have learned about the advantages and disadvantages of the use of the laboratory mouse as an animal model.
- 3. Students will have learned how to responsibly design, conduct, and interpret results using mouse models and will be familiar with the influence of genetic background, strain-related lesions, and environment.
- 4. Students will have been exposed to the state-of-the-art techniques used for the pathological characterization of mouse models.

Student Responsibilities and Expectations:

Students enrolled in this summer course will be expected to perform the following activities each week.

- 1. Read, process, and review (study) material from 1 or 2 seminal reviews relating to the week's cancer biology topic.
- 2. Participate in and contribute to course discussions during lectures.
- 3. Prepare for and take a midterm and final examination based on the lecture and some reading materials.

Students are expected to complete all assigned reading material (reviews and research literature) prior to class. Plagiarism and failure to properly cite scientific literature and other sources will not be tolerated and are grounds for dismissal from the course and further GSBS disciplinary action. Cheating or engaging in unethical behavior during examinations (quizzes and final) will be grounds for dismissal from the course without credit and further GSBS disciplinary action.

Grading System: Letter Grade (A-F)

Student Assessment and Grading Criteria: (May include the following:)

Percentage	Description
Midterm Exams (50 %)	6/30 – midterm exam will cover materials from the 5 classes.
Final Exam (50 %)	8/4 – final exam will cover materials from the last 4 classes.

CLASS SCHEDULE - SEE ATTACHED

PRINCIPLES OF EXPERIMENTAL MOUSE PATHOLOGY

SUMMER SEMESTER, 2023 (May 26-August 4)

CLASSES ON FRIDAYS 10am-12pm

DATE	SUBJECT	INSTRUCTOR	LECTURE
5/26	Introduction	Benavides (40 min)	Introduction to Course
	Rodent biology	Discussion (10 min)	Rodent biology, mouse anatomy, biology and physiology
		Break (10 min)	
	Rodent	Benavides (50 min)	Basic concepts of Rodent Genetics
	Genetics	Break (10 min)	
6/2	Animal Study	Bedford (50 min)	Formulating the hypothesis
	Design Intro	Discussion (10 min)	Choosing an experimental system
	Mouse Genetics	Benavides (50 min)	Basic concepts of Mouse Genetics
		Discussion (10 min)	
<i>C 1</i> 0	Genetic Models	Denovides (FO mis)	Chantanasus Mutatians
6/9		Benavides (50 min)	Spontaneous Mutations
	of Human	Break (10 min)	Transgenic mice and inducible systems
	Disease	Benavides (50 min)	Targeted Mutagenesis (KOs, KIs)
		Discussion (10 min)	Conditional mutant alleles (Cre/loxP and Flp/FRT systems)
			Gene editing using ZFN, TALEN, and CRISPR/Cas9
6/16	Genetic	Benavides (45 min)	Standardized genetic nomenclature
-,	Background	Break (10 min)	Genetic drift and substrains
	considerations	Benavides (45 min)	Influence of genetic background
		Discussion (20 min)	Modifier genes and passenger mutations
	T	T	
6/23	Histology	Sebastian (40 min)	Basic concepts of histopathology
		Discussion (20 min)	
	Mouse develop	Sebastian (50 min)	Basic concepts of mouse developmental biology
	Biology	Break (10 min)	

6/30	MIDTERM EXAM		
7/7	Mouse Models of toxicology	Sebastian (50 min) Break (10 min)	Toxicology studies
	Spontaneous	Sebastian (50 min)	Mouse Phenotyping
	lesions on	Discussion (10 min)	Background lesions in C57BL/6 mice
	inbred strains		Background lesions in FVB/N mice
			Background lesions in 129 mice
7/14	Mouse	Benavides (50 min)	Mouse models of cancer
//14	Models of	Break (10 min)	Wouse models of cancer
	Human	Benavides (50 min)	
	Disease	Discussion (10 min)	

7/21	Imaging & Digital Pathology	Perez (50 min) Break (10 min) Perez (60 min)	Digital pathology and In vivo imaging systems	
7/28	Week for revi	ew before last exam		
8/4	8/4 FINAL EXAM			

jal/FB