# CODE BLUE

Internal Medicine Noon Conference
July 18, 2014
Mark warner, MD



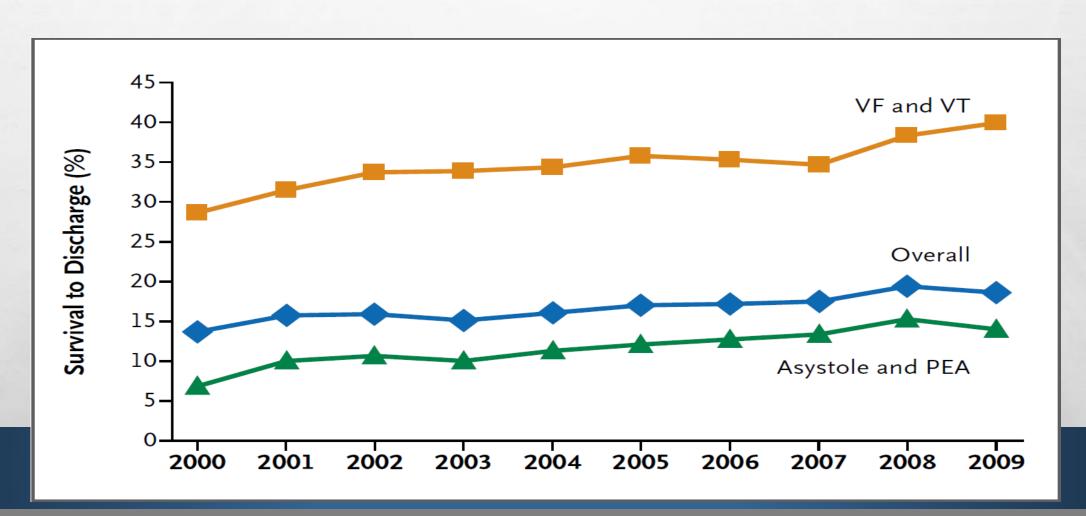
## **CPR FACTS**

In the hospital setting, among participating centers in the Get With The Guidelines-Resuscitation quality improvement program, the median hospital survival rate from adult cardiac arrest is 18% (interquartile range, 12%–22%) and from pediatric cardiac arrest, it is 36% (interquartile range, 33%–49%).

**Circulation** 2013;128:417-435

## **CPR FACTS**

- In a hospital setting, survival is >20% if the arrest occurs between the hours of 7 am and 11 pm but only 15% if the arrest occurs between 11 pm and 7 am.
- There is significant variability with regard to location, with 9% survival at night in unmonitored settings compared with nearly 37% survival in operating room/post anesthesia care unit locations during the day.


**Circulation** 2013;128:417-435

## **CPR FACTS**

- Patient survival is linked to quality of cardiopulmonary resuscitation (CPR).
- When rescuers compress at a depth of <38 mm, survival-to-discharge rates after out-of-hospital arrest are reduced by 30%.
- Similarly, when rescuers compress too slowly, return of spontaneous circulation (ROSC) after inhospital cardiac arrest falls from 72% to 42%.

**Circulation** 2013;128:417-435

### SURVIVAL AFTER IN-HOSPITAL CARDIAC ARREST



## SURVIVAL AFTER IN-HOSPITAL CARDIAC ARREST

| Table 2. Trends in Survival and Neu | rologic | Outcon | nes.* |      |         |         |      |      |      |      |                                              |                       |
|-------------------------------------|---------|--------|-------|------|---------|---------|------|------|------|------|----------------------------------------------|-----------------------|
| Outcome                             |         |        |       | Ris  | k-Adjus | ted Rat | es†  |      |      |      | Adjusted Rate<br>Ratio per Year<br>(95% CI); | P Value<br>for Trend‡ |
|                                     | 2000    | 2001   | 2002  | 2003 | 2004    | 2005    | 2006 | 2007 | 2008 | 2009 |                                              |                       |
|                                     |         |        |       |      | per     | cent    |      |      |      |      |                                              |                       |
| Survival to discharge               | 13.7    | 17.1   | 18.2  | 17.8 | 18.9    | 20.0    | 20.5 | 21.2 | 23.3 | 22.3 | 1.04 (1.03–1.06)                             | < 0.001               |
| Acute resuscitation survival§       | 42.7    | 45.1   | 45.4  | 46.0 | 47.0    | 48.6    | 49.7 | 52.5 | 55.2 | 54.1 | 1.03 (1.02-1.04)                             | < 0.001               |
| Postresuscitation survival¶         | 32.0    | 38.3   | 40.0  | 39.0 | 40.8    | 42.1    | 42.4 | 41.5 | 43.6 | 42.9 | 1.02 (1.01-1.03)                             | 0.001                 |
| Neurologic outcome in survivors     |         |        |       |      |         |         |      |      |      |      |                                              |                       |
| Clinically significant disability   | 32.9    | 35.7   | 31.9  | 34.3 | 34.0    | 33.1    | 33.0 | 32.7 | 31.8 | 28.1 | 0.98 (0.97–1.00)                             | 0.02                  |
| Severe disability**                 | 10.1    | 10.5   | 9.8   | 10.5 | 11.5    | 11.5    | 9.7  | 12.2 | 11.7 | 10.7 | 1.01 (0.98–1.04)                             | 0.37                  |

## SCENARIO #1



- You respond to a code blue for a patient in 4 Jones rehabilitation unit.
- On arrival you find the patient in the corner of the room in a vail bed, pulseless
- What do you do next?

## WHAT DO YOU DO?

- A. Freak out
- **B.** Tear open the vail bed with Hulk-like strength
- **C.** Unzip the vail bed and start chest compressions
- **11.** Yell at the 43 nurses in the room to get the crash cart

### **Adult Cardiac Arrest** Shout for Help/Activate Emergency Response Start CPR · Give oxygen · Attach monitor/defibrillator Rhythm shockable? VF/VT Asystole/PEA CPR 2 min Rhythm shockable? CPR 2 min CPR 2 min IV/IO access • Epinephrine every 3-5 min Epinephrine every 3-5 min · Consider advanced airway, Consider advanced airway, capnography capnography Rhythm Rhythm shockable? shockable? 11 CPR 2 min CPR 2 min Amiodarone · Treat reversible causes · Treat reversible causes Rhythm shockable? 12 · If no signs of return of Go to 5 or 7 spontaneous circulation (ROSC), go to 10 or 11 If ROSC, go to Post-Cardiac Arrest Care © 2010 American Heart Association

#### **CPR Quality**

- Push hard (≥2 inches [5 cm]) and fast (≥100/min) and allow complete chest recoil
- Minimize interruptions in compressions
- Avoid excessive ventilation
   Rotate compressor every
   2 minutes
- If no advanced airway, 30:2 compressionventilation ratio
- Quantitative waveform capnography
- If PETCO<sub>2</sub> <10 mm Hg, attempt to improve CPR quality
- Intra-arterial pressure
   If relaxation phase
   (diastolic) pressure
   <20 mm Hg, attempt
   to improve CPR quality

#### Return of Spontaneous Circulation (ROSC)

- Pulse and blood pressure
- Abrupt sustained increase in Petco<sub>2</sub> (typically ≥40 mm Hg)
- Spontaneous arterial pressure waves with intra-arterial monitoring

#### Shock Energy

- Biphasic: Manufacturer recommendation (eg. initial dose of 120-200 J); if unknown, use maximum available.
   Second and subsequent doses should be equivalent, and higher doses may be considered.
- Monophasic: 360 J

#### Drug Therapy

- Epinephrine IV/IO Dose:
   1 mg every 3-5 minutes
- Vasopressin IV/IO Dose:
   40 units can replace
   first or second dose of
   epinephrine
- Amiodarone IV/IO Dose: First dose: 300 mg bolus. Second dose: 150 mg.

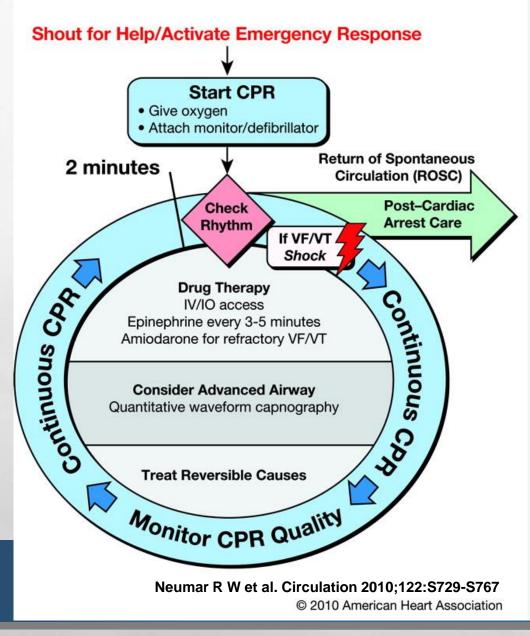
#### Advanced Airway

- Supraglottic advanced airway or endotracheal intubation
- Waveform capnography to confirm and monitor ET tube placement
- 8-10 breaths per minute with continuous chest compressions

#### Reversible Causes

- Hypovolemia
- Hypoxia
- Hydrogen ion (acidosis)
- Hypo-/hyperkalemia
- Hypothermia
- Tension pneumothoraxTamponade, cardiac
- Toxins
- Thrombosis, pulmonary
- Thrombosis, coronary

**ACLS Cardiac Arrest Algorithm.** 


Neumar R W et al. Circulation 2010;122:S729-S767



Learn and Live

## American Heart Association Learn and Live

### **Adult Cardiac Arrest**



#### **CPR Quality**

- Push hard (≥2 inches [5 cm]) and fast (≥100/min) and allow complete chest recoil
- Minimize interruptions in compressions
- Avoid excessive ventilation
- Rotate compressor every 2 minutes
- If no advanced airway, 30:2 compression-ventilation ratio
- · Quantitative waveform capnography
- If Petco, <10 mm Hg, attempt to improve CPR quality
- Intra-arterial pressure
  - If relaxation phase (diastolic) pressure <20 mm Hg, attempt to improve CPR quality

### Return of Spontaneous Circulation (ROSC)

- · Pulse and blood pressure
- Abrupt sustained increase in PETCO₂ (typically ≥40 mm Hg)
- · Spontaneous arterial pressure waves with intra-arterial monitoring

### **Shock Energy**

- Biphasic: Manufacturer recommendation (eg, initial dose of 120-200 J); if unknown, use maximum available. Second and subsequent doses should be equivalent, and higher doses may be considered.
- Monophasic: 360 J

### **Drug Therapy**

- Epinephrine IV/IO Dose: 1 mg every 3-5 minutes
- Vasopressin IV/IO Dose: 40 units can replace first or second dose of epinephrine
- Amiodarone IV/IO Dose: First dose: 300 mg bolus. Second dose: 150 mg.

### **Advanced Airway**

- · Supraglottic advanced airway or endotracheal intubation
- Waveform capnography to confirm and monitor ET tube placement
- 8-10 breaths per minute with continuous chest compressions

### **Reversible Causes**

- Hypovolemia
- Hypoxia
- Hydrogen ion (acidosis)
- Hypo-/hyperkalemia
- Hypothermia

- Tension pneumothorax
- Tamponade, cardiac
- Toxins
- Thrombosis, pulmonary
- Thrombosis, coronary

### Universal Cardiac Arrest Algorithm Unresponsive Not breathing or only occasional gasps Call for help: **Activate EMS/Resuscitation Team** Start CPR Minimize interruptions in chest compressions Focus on good quality CPR **Assess Rhythm** Shockable Non-Shockable (VF/Pulseless VT) (PEA/Asystole) **Advanced Life Support** Give 1 shock While minimizing interruptions to compressions Consider advanced airway · Continuous chest compressions Immediately resume CPR Immediately resume CPR after advanced airway in place · Consider capnography · Obtain IV/IO access · Consider vasopressors and antiarrhythmics · Correct reversible causes Immediate Post-Cardiac Arrest **Monitoring and Support** Including consideration of: • 12-lead ECG • Perfusion/reperfusion · Oxygenation and ventilation Temperature control · Reversible causes

Hazinski M F et al. Circulation. 2010;122:S250-S275



## **ORIGINS OF CPR**

### **Airway**

"But that life may . . . be restored to the animal, an opening must be attempted in the trunk of the trachea, into which a tube of reed or cane should be put."

Andreas Vesalius, 1540<sup>2</sup>

### **Breathing**

"I applied my mouth close to his, and blowed my breath as strong as I could."

William Tossach, 1744<sup>10</sup>

### Circulation

"I now had to regard the patient as dead. In spite of this, I returned immediately to the direct compression of the region of the heart."

Friedrich Maass, 1892<sup>23,24</sup>

## INTERACTION OF DIFFERENT FACTORS

- Age
- Gender/Race/Ethnicity
- Morbidity

- First Monitored Rhythm
- Event Intervals
- Event Duration
- Hospital Location
- Time of Day

## SCENARIO #1 (CONT.)

- You indeed tear open the vail bed and start compressions
- You yell at the 43 nurses standing around
- The crash cart is opened
- The cardiology fellow is placing a line
- You are doing chest compressions
- No one is bagging the patient



## SCENARIO #1 (CONT.)

- Others finally come to your aid and good quality chest compressions are being done
- The patient is asystole when hooked up to the crash cart monitor
- A femoral central line is secured and IV medications are being given as well as IVF
- You attempt to bag the patient but you are getting very weak chest rise
- And the bed is stuck in the down position
- You get down on the floor and attempt intubation but are unable to intubate the patient after 2 attempts
- Anesthesia is on holiday and are unable to assist you
- What do you do to obtain an airway?

### WHAT DO YOU DO TO OBTAIN AN AIRWAY?

- A. Intubate the patient with GlideScope
- **B.** Place an LMA
- **C.** Emergent surgical airway
- **11.** Bag the patient with an oral airway

## **DIFFICULT AIRWAY ALGORITHM**

**Plan A: Direct Laryngoscopy** 

Plan B: GlideScope

**Plan C: Fiberoptic Intubation** 

Plan D: Intubate through LMA

**Bailout: Ventilate through LMA and call for help** 

**Plan Last: Emergent Surgical Airway** 

## SCENARIO #2

- You are called to see a patient that is sent from MIMU to MICU by rapid response
- On arrival, the patient is awake and delirious
- HR 40, BP 80/42, sPo2 94%
- What do you do next?

### APPROACH TO BRADYCARDIA

### **Causes**

- Intrinsic
  - Sinus node dysfunction
  - Athletic heart
  - Inferior MI
  - Surgery
  - Collagen-vascular disease
  - Infiltrative disease
- Extrinsic
  - Vagal-mediated
  - Hypothermia
  - Metabolic acidosis
  - Hypoxia
  - Electrolyte disorders
  - Sensis
  - Increased ICP
  - Medications

### **Treatments**

- Is the patient symptomatic?
  - Remove medications causing bradycardia
  - Correct metabolic disturbances
  - Avoid triggers causing vagal-mediated reaction
- Medical intervention
  - Atropine
  - Epinephrine
  - Dopamine
  - Isoproterenol
  - Glucagon
- Temporary/permanent pacing

## SCENARIO #2 (CONT.)

- You recognize the patient's confusion to be a sign of inadequate cerebral perfusion
- You correctly label the patient's condition as symptomatic bradycardia
- You start a dopamine drip and connect the transcutaneous pacer pads
- You call cardiology for emergent transvenous pacer
- You then have a chance to read the chart and realize that the team has been giving escalating doses of beta-blocker medication to this patient

### APPROACH TO CHANGE IN MENTAL STATUS

### **Questions to answer:**

Is my patient having a stroke?

When in doubt/if patient has focal deficits, get a STAT noncontrast Head CT.

Is my patient having an MI?

Consider EKG, cardiac enzymes

**Does my patient have sepsis?** 

- **Does your patient need IVF bolus for hypotension?**
- **Does your patient need IV antibiotics urgently?**

### **DEFINITIONS OF IMPAIRED CONSCIOUSNESS**

- Drowsiness
  - State of impaired awareness associated with desire or inclination to sleep
- Stupor
  - State of impaired consciousness where the individual shows markedly diminished reactivity to environmental stimuli
- Comatose
  - State of profound unconsciousness where one cannot be aroused

## **DELIRIUM**

- 1. Acute onset of fluctuating mental status
- **2.** Inattention
- **3.** Disorganized thinking
- 4. Altered level of consciousness

For diagnosis need 1 & 2 + 3 or 4

**Delirium is a medical emergency!** 

## **CLUES IN ASSOCIATIONS**

- Altered mental status + Diabetes
  - Think of oral hypoglycemics, get a finger stick!
- Altered mental status + Fever
  - Think meningitis/encephalitis/UTI
- Altered mental status + Hypotension
  - Think sepsis or inferior MI
- Altered mental status + Dyspnea
  - Think pneumonia or MI/CHF
- Altered mental status + Hemparesis or Dysarthria
  - Think stroke
- Altered mental status + Failure to thrive
  - Think hyponatremia

## SCENARIO#3

- You respond to code blue on 3 cullen
- On arrival to the room, you notice the patient is a 20 yr old white man
- He is found half way between the bathroom and the bed
- He is pulseless
- What do you do?

## WHAT DO YOU DO?

- A. Put him back in bed
- **B.** Code him on the floor

## SCENARIO #3 (CONT.)

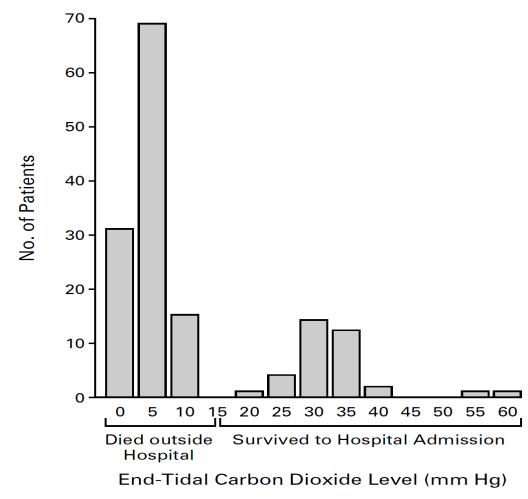
- You call for help and the cavalry arrives
- You place him into bed
- Chest compressions are started
- A sinus brady rhythm is showing on the monitor, but he is pulseless



### PEA DIFFERENTIAL DX

### H'S

- Hypovolemia
- Hypoxia
- Hydrogen ion (acidosis)
- Hyper/hypokalemia
- Hypoglycemia
- Hypothermia


### T'S

- Tablets/Toxins
- Tamponade (cardiac)
- Tension pneumothorax
- Thrombosis (coronary)
- Thrombosis (pulmonary)
- Trauma

## SCENARIO #3 (CONT.)

- You continue to code the 20 year old for 30 minutes
- You have central access and according to perfect acls algorithm, he has gotten pulse checks every 2 minutes and epinephrine every 3-5 minutes
- He has an advanced airway in place that has been verified by capnography and bilateral breath sounds
- You place EtCO<sub>2</sub> and it shows 10-20 mm Hg
- What additional considerations might you have at this point?

## PREDICTORS OF SURVIVAL- ETCO22



**Figure 1**. Histogram of Number of Patients (Frequency) at Each Value for End-Tidal Carbon Dioxide, with Standard "Midpoint" Groupings.

**TABLE 2.** END-TIDAL CARBON DIOXIDE VALUES IN PATIENTS WHO DIED IN THE HOSPITAL AND IN THOSE WHO SURVIVED TO DISCHARGE FROM THE HOSPITAL.

| Variable      | DIED IN<br>HOSPITAL<br>(N = 19) | SURVIVED TO DISCHARGE (N = 16)* | P<br>Valuet |
|---------------|---------------------------------|---------------------------------|-------------|
|               | mean ±9                         | SD (range)                      |             |
| Age (yr)      | $76.8 \pm 6.9 \; (64 - 89)$     | $65.2\pm15.7\ (27-90)$          | 0.009       |
| End-tidal car | rbon dioxide                    |                                 |             |
| (mm H         | g)‡                             |                                 |             |
| Initial       | $11.9 \pm 5.1 \ (5-20)$         | $12.5 \pm 4.1 \ (7-22)$         | 0.68        |
| Final         | 31.8±7.3 (18–56)                | $34.0\pm7.7\ (24-58)$           | 0.28        |

<sup>\*</sup>Fourteen of these 16 patients were still alive six weeks after discharge from the hospital.

†P values were calculated with the Wilcoxon rank-sum statistic.

‡Initial end-tidal carbon dioxide levels were determined immediately upon intubation. Final end-tidal carbon dioxide levels were determined after 20 minutes of advanced cardiac life support.

## WHO SHOULD GET E-CPR?

- Young patients
- Reversible cause
- Early initiation
- Good quality CPR
- Make sure ECMO is available

### HOW MUCH TIME SHOULD YOU BE CODED?

Between 2000 and 2008, 64,339 patients with cardiac arrests at 435 US hospitals within the Get With The Guidelines—Resuscitation registry.

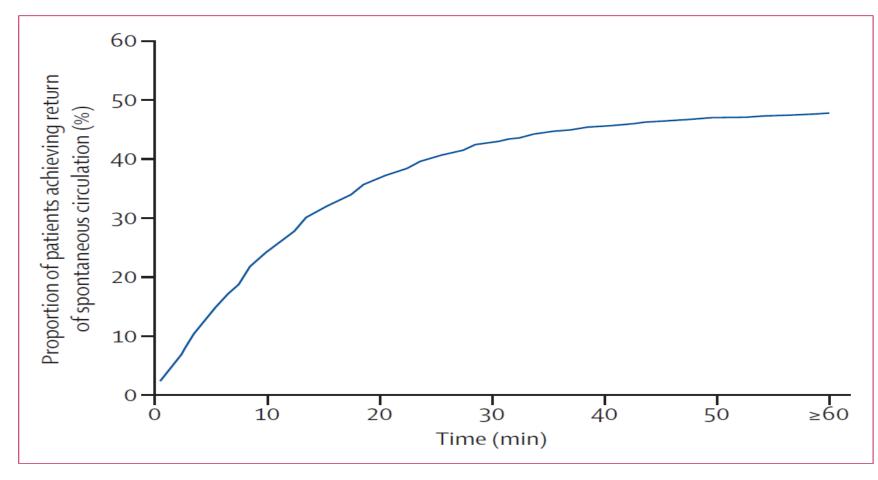



Figure 1: Cumulative proportion of patients achieving return of spontaneous circulation

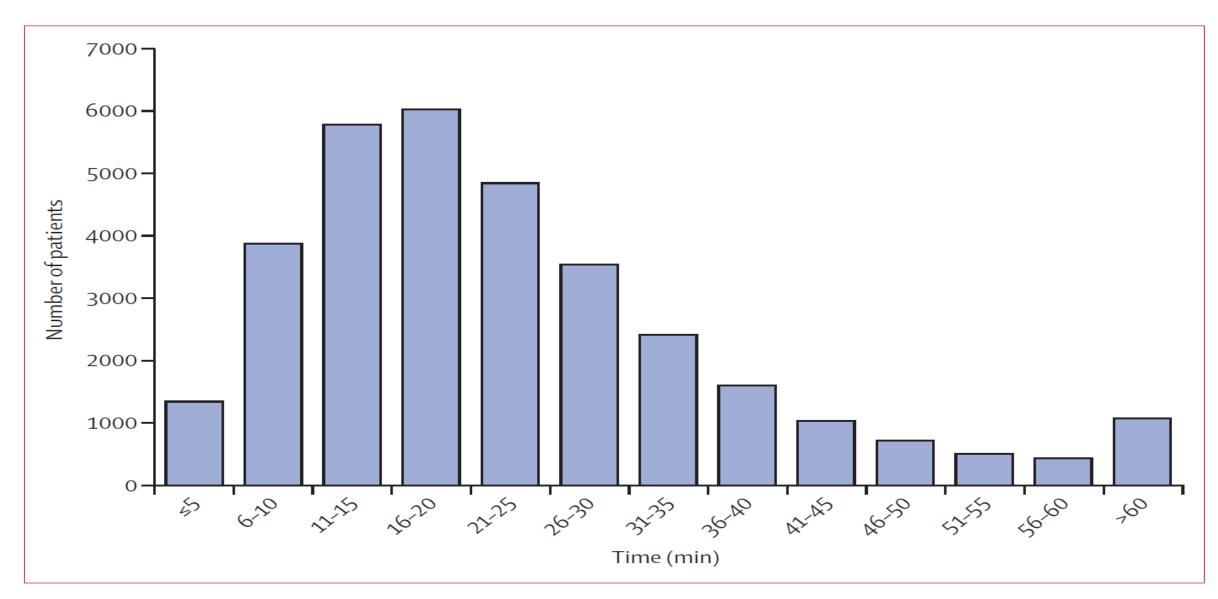



Figure 2: Duration of resuscitation attempts in non-survivors N=33 141.

## Duration of resuscitation efforts and survival after in-hospital cardiac arrest: an observational study

|                                               | Return of sponta                | neous circ    | ulation* | Survival to disch               | arge†         |         |  |  |
|-----------------------------------------------|---------------------------------|---------------|----------|---------------------------------|---------------|---------|--|--|
|                                               | Adjusted risk<br>ratio (95% CI) | Adjusted rate | p value  | Adjusted risk<br>ratio (95% CI) | Adjusted rate | p value |  |  |
| Quartile 1 (13 994 patients at 113 hospitals) | 1.00                            | 45·3%         |          | 1.00                            | 14.5%         |         |  |  |
| Quartile 2 (18783 patients at 121 hospitals)  | 1.04 (0.99–1.09)                | 47.0%         | 0.116    | 1.05 (0.96–1.14)                | 15.2%         | 0.304   |  |  |
| Quartile 3 (19 106 patients at 107 hospitals) | 1.08 (1.03–1.13)                | 48.8%         | 0.002    | 1.05 (0.96–1.14)                | 15.2%         | 0.280   |  |  |
| Quartile 4 (12 456 patients at 94 hospitals)  | 1.12 (1.06–1.18)                | 50.7%         | <0.0001  | 1.12 (1.02–1.23)                | 16.2%         | 0.021   |  |  |

<sup>\*</sup>p for trend <0.0001. †p for trend 0.031.

Table 3: Return of spontaneous circulation and survival to discharge in all patients, by hospital quartile

Table 4: Return of spontaneous circulation in patients stratified by presenting rhythm of pulseless electrical activity or asystole versus ventricular tachycardia or fibrillation, by hospital quartile\*

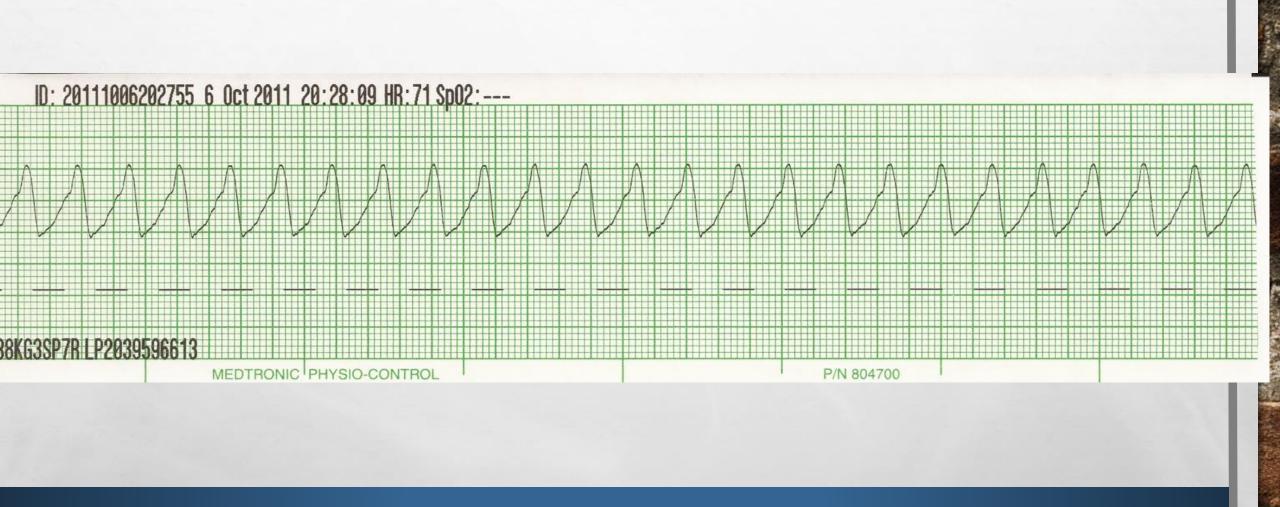

|                                               | Pulseless electric<br>asystole† | al activity      | y or      | Ventricular tachycardia or<br>fibrillation‡ |                  |         |  |
|-----------------------------------------------|---------------------------------|------------------|-----------|---------------------------------------------|------------------|---------|--|
|                                               | Adjusted risk<br>ratio (95% CI) | Adjusted<br>rate | d p value | Adjusted risk<br>ratio (95% CI)             | Adjusted<br>rate | p value |  |
| Quartile 1 (13 994 patients at 113 hospitals) | 1.00                            | 41.6%            |           | 1.00                                        | 60.6%            |         |  |
| Quartile 2 (18783 patients at 121 hospitals)  | 1.04 (0.99–1.09)                | 43.1%            | 0.158     | 1.03 (0.98–1.08)                            | 62.4%            | 0.224   |  |
| Quartile 3 (19106 patients at 107 hospitals)  | 1.10 (1.04–1.16)                | 45.6%            | 0.001     | 1.02 (0.98–1.07)                            | 61.8%            | 0.400   |  |
| Quartile 4 (12 456 patients at 94 hospitals)  | 1.15 (1.08–1.22)                | 47.7%            | <0.0001   | 1.06 (1.01–1.11)                            | 64.1%            | 0.027   |  |

Table 5: Survival to discharge in patients stratified by presenting rhythm of pulseless electrical activity or asystole versus ventricular tachycardia or fibrillation, by hospital quartile\*

| (95% CI)    | Adjusted<br>rate           | p value                             | Adjusted risk<br>ratio (95% CI) | Adjusted                                                                             | p value                                                                                       |
|-------------|----------------------------|-------------------------------------|---------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|             |                            |                                     | (33.11 -1)                      | rate                                                                                 |                                                                                               |
|             | 10.2%                      |                                     | 1.00                            | 32·1%                                                                                |                                                                                               |
| (0.94–1.18) | 10.7%                      | 0.351                               | 1.03 (0.96–1.11)                | 33·2%                                                                                | 0.399                                                                                         |
| (0.97–1.23) | 11.1%                      | 0.132                               | 0.98 (0.90–1.06)                | 31.4%                                                                                | 0.570                                                                                         |
| (1.05–1.36) | 12·2%                      | 0.006                               | 1.02 (0.93–1.12)                | 32.8%                                                                                | 0.662                                                                                         |
|             | (0·97–1·23)<br>(1·05–1·36) | (0·97–1·23) 11·1% (1·05–1·36) 12·2% | (0.97–1.23) 11.1% 0.132         | (0·97–1·23) 11·1% 0·132 0·98 (0·90–1·06)<br>(1·05–1·36) 12·2% 0·006 1·02 (0·93–1·12) | (0·97–1·23) 11·1% 0·132 0·98 (0·90–1·06) 31·4% (1·05–1·36) 12·2% 0·006 1·02 (0·93–1·12) 32·8% |

## SCENARIO #4

- You are in the CCU
- You are a budding cardiologist
- You are seeing a 75 year old man with some hypoxemia on nasal cannula and obtaining a history
- He has atrial fibrillation on the monitor and you hear a harsh 3/6 SEM at the LUSB
- As you sit him up in bed, he becomes unresponsive
- On the monitor you see...



# WHAT DO YOU DO?

- A. Call a code
- **B.** Push lidocaine
- **C.** Start amiodarone
- D. Give metoprolol
- E. Pass out

# SCENARIO #5

- You are minding your own business walking through 3C at night
- You have just finished a wonderful LBJ cafeteria meal
- You are checking on a middle-aged man that your co-resident admitted earlier in the day
- His history is unfamiliar to you but you think he has cancer and you heard the nurse say something about fever
- You notice his heart rate is 110 on the monitor, his BP 90/40, his Sp02 92% on nasal cannula and for some reason, the respiration monitor is picking up and says 30 bpm

# YOU ARE WHICH OF THE FOLLOWING?

- A. Not interested, you are already having a long day
- **B.** Curious about the chemotherapy regimen that he is on
- **G.** Too busy watching the world cup
- **U.** Curious, but not enough to examine him
- E. Concerned enough to call a rapid response

# WHEN TO CONSIDER RAPID RESPONSE

- When the patient is hypotensive and not responsive to 2L IVF
- When patient has an unstable tachyarrhythmia
- When the patient is tachypneic and not readily responding to conservative measures
- When the patient is obtunded
- If you require NIPPV for rescue
- When the patient's vital signs are deteriorating
- Bottom line: better to call rapid response before the 'code blue'

# SIRS CRITERIA

- Temperature < 36° C or > 38° C
- Heart Rate > 90 bpm
- Respiratory Rate > 20 breaths/MIN or  $PaCO_2 < 32 \text{ mmHg}$
- White Blood Cell Count > 12,000 or < 4,000 cells/mm³ **or** > 10% bands

# SHOCK

- Cardiogenic shock a major component of the the mortality associated with cardiovascular disease (the #1 cause of U.S. deaths)
- Hypovolemic shock the major contributor to early mortality from trauma (the #1 cause of death in those < 45 years of age)
- Septic shock the most common cause of death in American ICUs (the 13th leading cause of death overall in US)

# **APPROACH TO HYPOTENSION**

Question 1: Is this patient in shock?

\*Are there signs of end-organ hypoperfusion?

- Altered mental status/obtundation
- AKI manifested by oliguria
- Lactic acidosis
- Cool skin/extremities
- Decreased mean blood pressure
- Tachycardia

Question 2: If the patient is in shock, do they need to be intubated?

**Question 3: Is the patient's cardiac output adequate?** 

### **APPROACH TO HYPOTENSION**

#### **Hypotension + Reduced Cardiac Output**

#### Signs:

- Narrow pulse pressure
- Cool extremities/ delayed capillary refill (>3 sec)

#### **Differential diagnosis:**

- Hypovolemic Shock
- Cardiogenic Shock
- Obstructive Shock

#### **Possible Causes:**

- Hypovolemic Shock
  - Volume depletion/dehydration
  - Hemorrhage
- Cardiogenic Shock
  - Myocardial Ischemia
  - Valvular lesions
- Obstructive Shock
  - Acute Pulmonary Embolus
  - Pericardial Tamponade

#### **Hypotension + Increased Cardiac Output**

#### **Signs:**

- Widened pulse pressure
- Warm extremities/ bounding pulses
- Differential diagnosis: You can infer from this situation that the increased cardiac output with hypotension is due to reduced SVR = DISTRIBUTIVE SHOCK

#### **Possible Causes:**

- Sepsis/Septic Shock
- Liver failure
- Pancreatitis
- Burns/Trauma
- Anaphylaxis
- Thyrotoxicosis
- Neurogenic Shock

### RESPIRATORY FAILURE

Is the patient appropriate for NIPPV (Noninvasive Positive Pressure Ventilation a.k.a. CPAP or  $BiPap^{\otimes}$ )?

- ✓ COPD exacerbation
- ✓ Cardiogenic pulmonary edema
- ✓ Hypoxemic respiratory failure in immunosuppressed patients
- ✓ Hypoxemic respiratory failure in post-thoracotomy patients
- ✓ End of life palliative respiratory failure

### When Not to use NIV

**Hemodynamic Instability** 

Aspiration Risk ineffective Therapy/ Delay in Therapy

Facial Anatomy Concerns

- Shock
- Cardiac arrest
- Coma/altered mentation
- Inability to protect airway hypoxemia
- Vomiting/bowel obstruction
- Recent upper GI surgery

- Life threatening
- vay nypoxemia • Severe pneumonia
- Pneumothorax
- Facial/upper airway surgery
- Facial burns/trauma
- Fixed upper airway obstruction
- Copious secretions

# **NEWEST RECOMMENDATIONS**

High-quality CPR should be recognized as the foundation on which all other resuscitative efforts are built. Target CPR performance metrics include:

- a. CCF > 80% (proportion of code that chest compressions are ongoing)
- **b. Compression rate of 100–120/min**
- c. Compression depth of  $\geq$ 50 mm in adults with no residual leaning
  - i. (At least one third the anterior-posterior dimension of the chest in infants and children)
- d. Avoid excessive ventilation
  - i. (Only minimal chest rise and a rate of <12 breaths/min)

Circulation. 2013;128:417-435

# **QUALITY IMPROVEMENT**

- Simplify CPR
  - 15:2 $\rightarrow$ 30:2 $\rightarrow$ Continuous Chest Compressions
  - "Hands Only" for Adults
  - Conventional CPR for Children
- Quality CPR
- De-emphasis of ACLS Drugs
- Minimize interruptions in Chest Compressions and Compression-Shock interval
- Organized Post-Cardiac Arrest Care

# "A-B-C" TO "C-A-B"

- Early onset of chest compressions (30 sec to 18 sec)
- ullet Early chest compressions ullet Early defibrillation
- Increase likelihood of bystander CPR with emphasis on chest compressions
- "It is reasonable for healthcare providers to tailor the sequence of rescue actions to the most likely cause of arrest."

# **AIRWAY MANAGEMENT**

- Class I recommendation for adults: use of quantitative waveform capnography for confirmation and monitoring of endotracheal tube placement.
- The use of supraglottic advanced airways continues to be supported as an alternative to endotracheal intubation for airway management during CPR.
- The routine use of cricoid pressure during airway management of patients in cardiac arrest is no longer recommended.

# THE END

