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Retrieving fear memories, as time goes by…
FH Do Monte1, GJ Quirk1, B Li2 and MA Penzo3

Research in fear conditioning has provided a comprehensive picture of the neuronal circuit underlying the formation of fear
memories. In contrast, our understanding of the retrieval of fear memories is much more limited. This disparity may stem from the
fact that fear memories are not rigid, but reorganize over time. To bring some clarity and raise awareness about the time-
dependent dynamics of retrieval circuits, we review current evidence on the neuronal circuitry participating in fear memory
retrieval at both early and late time points following auditory fear conditioning. We focus on the temporal recruitment of the
paraventricular nucleus of the thalamus (PVT) for the retrieval and maintenance of fear memories. Finally, we speculate as to why
retrieval circuits change with time, and consider the functional strategy of recruiting structures not previously considered as part of
the retrieval circuit.
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INTRODUCTION
Animals have an extraordinary ability to associate threatening
events with sensory stimuli (images, smells, sounds). Such
memories can persist long after learning,1–3 and this persistence
is critical for survival.4 The evolutionarily favored ability to
remember cues that were previously associated with danger
allows animals to select the most appropriate defensive
responses.5,6 Decades of research on ‘fear (or threat) conditioning’
have led to a comprehensive understanding of the neuronal
circuitry controlling acquisition of fear memories (for recent
reviews see refs 7–9), but much less is known about circuits for
retrieval of these memories.
Part of the challenge in identifying fear retrieval circuits is that

memories are not permanently stored into a single region, but
gradually reorganize over time (for review see refs ,10–13). Recent
studies in rodents provide evidence supporting a
time-dependent reorganization of the fear retrieval circuits
following both contextual fear conditioning,14–23 as well as audi-
tory fear conditioning.24–29 However, a systematic comparison of
the different circuits required for retrieval at early (hours after
conditioning) vs late (days to weeks after conditioning) time
points is lacking.
In this review, we summarize current evidence on the neuronal

circuitry participating in the retrieval of auditory fear memories at
early vs late time points. Prior reviews on the retrieval of auditory
fear memories have focused largely on the 24-h post-conditioning
time point, potentially missing temporal changes occurring in
the retrieval circuits long after conditioning. We will begin by
comparing lesion and pharmacological inactivation studies with
more recent findings incorporating optogenetics, chemogenetics
(mediated by designer receptors exclusively activated by designer
drugs, DREADDs), and electrophysiological recordings from
identified neurons in vivo. Next, we will discuss current literature
surrounding the involvement of the paraventricular nucleus of the

thalamus (PVT) in the regulation of fear memory. Finally, we
speculate as to the functional significance of time-dependent
alterations in retrieval circuits, and how current evidence
discussed here could impact the design of future experiments in
laboratory animals and humans.

FEAR MEMORY FORMATION: IMPORTANT CAVEATS
The process of fear memory formation is generally divided into
three phases: acquisition, consolidation and retrieval. During the
acquisition phase, learned associations between aversive out-
comes and the cues that predict them (for example, contextual
and auditory) are encoded in discrete brain circuits. Memory
acquisition is then followed by a consolidation phase that lasts
from a few hours (synaptic consolidation) to several days or even
weeks (systems consolidation), allowing for encoded information to
be stored as a memory trace. Learned fear associations can be
assessed by measuring animals’ display of defensive behaviors after
learning, in a phase called fear memory retrieval. Because systems
consolidation recruits multiple regions over time, brain circuits
underlying memory retrieval can differ at early vs late time points.
Although the phases of fear memory formation are seemingly

well defined, there are important caveats that need to be
considered when interpreting behavioral studies using laboratory
animals. For example, a systematic distinction between acquisition
and consolidation phases may be difficult with some experimental
designs. Indeed, in many cases, the effects of the pre-training
manipulation extend beyond the training phase, and one cannot
entirely rule out the possibility that the manipulation is also
interfering with consolidation. The recent implementation of
techniques with high temporal resolution (for example, optoge-
netics) have helped to circumvent this problem.30 Similarly, in
experiments using pre-retrieval inactivation of brain struc-
tures and/or selected circuitry, it may be particularly difficult to
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disentangle circuits of memory retrieval from those of memory
storage. Although the observation of memory impairment during
the test phase may suggest that a potential circuit is necessary for
memory retrieval, it cannot determine if the same circuit is the
specific site for memory storage.
Furthermore, a distinction between circuits of fear retrieval and

fear expression may depend on whether specific behavioral
comparisons are performed. For example, in fear conditioning,
one may argue that a specific manipulation affects the retrieval,
rather than the expression of fear responses, if the animal’s ability
to exhibit the same defensive response in a different behavioral
protocol is preserved. This type of comparison has been
demonstrated in a few studies where the ability to express fear
responses was impaired during a conditioned fear test, but
remained intact during an innate fear test.31–33 Alternatively,
evaluating fear memory in ways other than freezing behavior (for
example, heart rate, blood pressure, avoidance and flight
response) can also help to distinguish between retrieval and
expression. In general, disambiguating retrieval and expression
circuits can be complicated by the intermingled nature of circuits
thought to control both processes.
Keeping in mind the abovementioned caveats, we will now

review the target areas participating in early and late retrieval of
fear memories.

EARLY RETRIEVAL OF FEAR MEMORIES
There is a general consensus that the acquisition of auditory fear
memories requires the integration of sensory information in the
amygdala (for review see refs 34,35). Specifically, information
about tone and shock originating in cortical and thalamic areas
converge onto principal neurons of the lateral nucleus of the
amygdala (LA), leading to synaptic changes that store tone-shock
associations.36–39 Similar conditioning-induced changes in synap-
tic transmission have been recently reported in the lateral portion
of the central nucleus of the amygdala (CeL),40,41 an area that
is also critical for fear memory formation.42–44 In addition to their
role in conditioning, LA and CeL are necessary for fear memory
retrieval soon after conditioning (up to 24 h). A detailed
description of the literature supporting these conclusions follows.

Amygdala microcircuits necessary for early retrieval
In the last decade, studies using lesions or pharmacological
inactivation in rodents indicate that activity in the basolateral
complex of the amygdala (BLA; comprising LA and the basal
nucleus of the amygdala) is critical for retrieval of fear memory
24 h following conditioning.45–48 LA neurons project to CeL, as
well as to the basal nucleus of the amygdala (BA), both of which
are connected with the medial portion of the central nucleus of
the amygdala (CeM).49–53 Neurons in CeM then project to
downstream regions, such as the periaqueductal gray and the
hypothalamus, to mediate autonomic and behavioral correlates of
conditioned fear.54,55 Tone-evoked responses in LA neurons are
increased within 1 h following fear conditioning,56,57 and persist
for several days after learning.58–60 Similar conditioned responses
24 h after conditioning have been demonstrated in BA,61,62 and
inactivating BA at this time point impairs fear retrieval.45,61 BA
contains a population of glutamatergic neurons in which activity is
correlated with fear expression (‘fear neurons’), and participate in
the generation of fear responses by relaying LA activity to the
CeM.8,62

Similar to BA, retrieval of fear memories at the 24 h time point
activates neurons in CeM, and pharmacological inactivation of
CeM with the GABAA agonist muscimol impairs fear retrieval.44,63

In contrast to CeM, muscimol inactivation of CeL promotes
freezing behavior,44 consistent with inhibitory control of CeM
by CeL. In fact, it has been suggested that the release of CeL-

mediated inhibition in CeM is critical for the expression of freezing
during retrieval of fear memory.41,44,64 This disinhibition hypoth-
esis is also supported by electrophysiological findings of two
populations of inhibitory neurons in CeL 24 h following fear
conditioning: one with excitatory tone responses (CeLON neurons),
and another with inhibitory tone responses (CeLOFF neurons).

44 A
fraction of CeLOFF neurons expresses protein kinase C-delta,
projects to CeM, and is hypothesized to tonically inhibit CeM
neurons.44,64 CeLON neurons, which likely do not overlap with
protein kinase C-delta positive neurons,64 selectively inhibit their
CeLOFF counterpart leading to the disinhibition of CeM output
neurons during fear memory retrieval.44,64

There also exists a functional dichotomy within CeL based on
the discordant expression of the neuropeptide somatostatin (SOM;
CeL-SOM+ neurons and CeL-SOM− neurons). Whereas optogenetic
silencing of CeL-SOM+ neurons impairs fear memory retrieval,
optogenetic activation of CeL-SOM+ neurons induces fear
responses in naïve mice.41 Further, experiments are necessary to
determine if CeL-SOM+ neurons overlap with CeLON neurons. A
similar disinhibitory mechanism has been described in the
amygdala for the medial intercalated cells, a group of GABAergic
cells located in the intermediate capsule of the amygdala between
BLA and central nucleus of amygdala (CeA).65–67 During early fear
retrieval, excitatory inputs from LA neurons excite the dorsal
portion of medial intercalated cells generating feed-forward
inhibition of their ventral portion. The reduction in activity in
the ventral portion of medial intercalated cells release CeM output
neurons from inhibition, thereby allowing fear responses to occur
(for review see ref. 8).

Early retrieval requires the prelimbic cortex
The medial prefrontal cortex (mPFC) has long been suspected of
regulating emotional responses in animals and humans.68–72 Two
subregions of the rodent mPFC, the prelimbic cortex (PL) and the
infralimbic cortex, have emerged as opposites in the regulation of
fear memories. Whereas PL activity is necessary for fear retrieval
soon (24 h) after conditioning,28,31,47 infralimbic cortex activity at
this same time point is critical for fear extinction learning.73–77

A significant fraction of PL neurons (~25%) displays increased
and sustained tone-evoked firing 24 h after conditioning, a
response that mirrors the time course of freezing behavior.78,79

In this way, PL activity predicts the magnitude of fear
responses.80,81 Conditioned responses of PL neurons depend on
BLA inputs, as pharmacological inactivation of BLA decreases both
spontaneous activity and tone responses in putative PL projection
neurons.82 Consistent with this idea, a recent study combining
retrograde tracing with optogenetic techniques demonstrated
that ‘fear neurons’ of BA project exclusively to PL, and optogenetic
silencing of these projections 24 h after conditioning inhibits fear
retrieval.83

PL not only receives projections from BLA, but also projects to
this region.84,85 Silencing of PL projections to BLA with optoge-
netic techniques 6 h after conditioning impaired fear memory
retrieval,28 suggesting that PL exerts a top–down modulation
of amygdala activity. Consistent with this idea, retrieval of
conditioned fear at 24 h after conditioning is correlated with
synchronous 4 Hz oscillations in the PL-BLA circuits, and opto-
genetic generation of 4 Hz oscillations in PL is sufficient to elicit
freezing responses in naïve mice.81 Conditioned increases in PL
activity may involve disinhibition, as it was recently shown that PL
interneurons expressing parvalbumin (PV+) decrease their activity
after conditioning, and optogenetic silencing of these cells drives
fear responses.86 Although these findings suggest a critical role of
PL interneurons in fear expression, further studies are needed
to investigate if the recently described long-range GABAergic
neurons in mPFC87 can also contribute to fear memory
regulation.88
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LATE RETRIEVAL OF FEAR MEMORIES
A growing number of studies indicate that circuits guiding the
retrieval of fear memories change with the passage of time after
conditioning (see Figure 1). Below, we review the evidence
supporting a time-dependent reorganization of the fear circuits,
beginning with the auditory cortex, a region necessary for retrieval
at late, but not early, time points.

Recruitment of auditory cortex for retrieval
Fear conditioning induces increased tone-evoked firing in the
primary auditory cortex neurons 1–4 h after learning.89 Because
the latency of conditioned tone responses in the auditory cortex
(~20–40 ms) is longer than in LA (~10–20 ms),57 one can conclude
that LA tone responses assessed early after conditioning do not
depend on auditory cortex inputs. Consistent with this, lesions of
the primary auditory cortex shortly before or after fear condition-
ing do not prevent the acquisition or consolidation of fear
memories, suggesting that the auditory thalamus is sufficient to
support fear learning in the amygdala90–93 (but see ref. 94).
Instead, activity in the primary auditory cortex seems to be critical
for fear memory acquisition under special training conditions such
as the use of complex tone sequences95 or a gap between the
tone and the unconditioned stimulus (trace fear conditioning).96,97

Whereas the primary auditory cortex seems to be dispensable
for the formation of classical auditory fear conditioning, the
secondary auditory cortex (Te2) has a critical role in the retrieval
of fear memory long after conditioning.25,27 Lesions of Te2
performed 30 days, but not 24 h, after conditioning impair fear
retrieval,27 and conditioning increases the expression of the
neuronal activity marker zif268 in Te2 30 d after, but not 24 h after,
learning.25,27 Interestingly, pharmacological inactivation of Te2 at
24 h after conditioning impaired fear retrieval 30 days, but not
7 days after conditioning, suggesting that early activity in Te2
neurons is required for the formation of older fear memories.98

Together, these results highlight a putative role for the auditory
cortex in the retrieval of fearful stimuli long after fear associations
are established.99

The recruitment of area Te2 for retrieval of auditory fear
memory resembles the time-dependent recruitment of the
anterior cingulate cortex (aCC) for retrieval of contextual fear
memory.13 Retrieval of contextual fear information 24 h after
conditioning depends on activity in the hippocampus, but not in
the aCC, whereas retrieval 36 days after conditioning depends on
activity in the aCC, but not in the hippocampus.16 Retrieval of
fear memories at 24 h or 36 days was associated with an increase
in dendritic spine density in the hippocampus or the aCC,
respectively.21 Interestingly, blocking spine growth in the aCC
during the first post-conditioning week disrupts memory
consolidation.100 Although these studies suggests a cellular
mechanism underlying the time-dependent involvement of the
hippocampus and aCC in contextual fear retrieval, whether the
Te2 region also undergoes temporal plasticity changes following
auditory fear conditioning remains to be determined. For
additional information about the temporal reorganization of
hippocampus-dependent memories, the readers are encouraged
to read other reviews.101–104

Shifting of retrieval circuits in the prelimbic cortex
Prior studies have demonstrated that cortical areas are necessary
for retrieval at late but not early time points. This raises the
question as to the mechanisms involved in the transitions of
circuits across time. An important clue comes from PL, a structure
previously shown to be necessary for 24 h retrieval.28,31,47,86 A
recent study demonstrated that PL is necessary for retrieval of fear
at both 6 h and 7 days after conditioning, but the target of PL
efferent fibers shifts across the two time points.28 PL neurons

projecting to BLA are necessary for retrieval at 6 h (but not 7 days),
whereas PL neurons projecting to the PVT are required for
retrieval at 7 d (but not 6 h) following conditioning. This time-
dependent shift between retrieval circuits likely involves different
populations of neurons in the PL, because neurons projecting to
BLA or PVT are located in different layers of PL.28,85,105,106

Although further studies on PL circuit dynamics are needed,
these findings suggest that time-dependent changes in PL
efferents may serve to reorganize retrieval circuits in subcortical
targets.

The role of the basolateral amygdala in late retrieval
The BLA has been classically described as a critical region for the
retrieval of recently acquired fear memories. However, its role in
fear memory retrieval long after conditioning is far less clear, with
evidence either in support of or against its involvement.
Studies in rats have demonstrated that retrieval of fear memory

28 days after conditioning increases the expression of the
neuronal activity marker zif268 in LA,25,27 with no significant
changes in BA.27 Fear retrieval at 28 days is also correlated with
increased coherence between the BLA and the auditory cortex
(Te2) in the low-theta activity (3–7 Hz),107 a frequency range that
has been associated with freezing responses.108 Evidence
supporting the necessity of BLA in fear memory retrieval at late
time points comes from experiments using post-training lesion
techniques in rodents. Indeed, excitotoxic lesions of BLA per-
formed before,109 as well as 7 days, 14 days or 16 months after
fear conditioning produced significant deficits in fear retrieval,3,110

suggesting that BLA is an important substrate to retrieve old fear
memories. In contrast, studies in monkeys have demonstrated that
lesions of the amygdala, including BLA, impair the acquisition of
fear memories, but not retrieval when performed 14–45 days after
conditioning.111,112 Nevertheless, because lesion techniques pro-
vide an inaccurate control of the lesion size, it is difficult to
determine whether these effects are due to damage to adjacent
areas (for example, CeA and the intercalated cells).
In contrast to lesion studies, recent reports employing newer

methodologies have challenged the idea that BLA is a critical site
for the retrieval of fear memories several days after conditioning.
Inducible silencing of synaptic output from BLA neurons
performed 3 days after fear acquisition had no effect on fear
retrieval, suggesting that BLA is dispensable for fear memory
retrieval long after conditioning.113,114 Further evidence that
BLA activity is not required for late fear memory retrieval is
the observation that optogenetic silencing of either BLA neurons
or PL-BLA communication impaired the retrieval of 6 h-old,
but not 7-day-old fear memories.28 Consistent with this, BLA
neurons showed increased expression of the neuronal activity
marker cFos during fear retrieval at 6 h or 24 h after conditioning,
but not 7 days after conditioning.28 Studies using the inhibitory
avoidance paradigm have also suggested that BLA activity is
temporarily required following conditioning, being critical for
the retrieval of recent (1 day), but not older (410 days) fear
memories.115–118

Altogether, there is increasing evidence that although BLA
participates in the acquisition and early retrieval of fear memories,
late retrieval of fear memories may occur independently of BLA. A
time-limited role of BLA neurons in memory retrieval may increase
the availability of BLA neurons for new associations, with more
permanent storage of emotional memories occurring in cortical
structures (for example, mPFC) where contextual and emotional
information are integrated with circuits involved in decision-
making119 (discussed later in this review). Although the mechan-
isms by which fear memories are transferred from BLA remain
unclear, the neuronal circuit underlying the retrieval of fear
memories downstream of the mPFC seems to require a previously
overlooked structure, the PVT.
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Paraventricular nucleus of the thalamus is recruited for retrieval
The PVT is a subdivision of the dorsal midline thalamus that is
anatomically connected with multiple brain regions known to be
involved in fear regulation, including PL, infralimbic cortex, BLA,
CeA and periaqueductal gray.105,120–123 A role of PVT in fear
retrieval at the 24 h time point has been suggested by previous
studies using lesion or pharmacological inactivation.124,125 Extend-
ing these findings, a recent study using chemogenetic techniques
in mice demonstrated that PVT projections to CeL are essential for
fear memory consolidation, as well as for the retrieval of fear
memory at the 24 h time point.29 A parallel study combining
pharmacological inactivation and optogenetic techniques in rats
demonstrated that, following conditioning, PVT becomes increas-
ingly necessary for fear memory retrieval.28 Unlike BLA, PVT is not
required for retrieval 6 h after conditioning, but is required at 24 h
and thereafter. Pharmacological inactivation of PVT at late time
points (tested at 7 and 28 days) also impaired retrieval in a
subsequent drug-free session, suggesting that activity in PVT
neurons is necessary for the maintenance of fear memory.28

These recent findings argue for PVT as an important regulator of
fear memories, becoming critical for fear memory retrieval 24 h
after conditioning, and raise the following questions: (1) When
does PVT become recruited into the fear memory circuit? (2) How
does PVT regulate fear memories? and (3) What are the
advantages of PVT recruitment? In the following sections, we will
discuss current evidence that may help to answer some of these
questions and also identify the critical experiments needed to fill
the knowledge gap.

WHEN IS PVT RECRUITED INTO THE FEAR CIRCUIT?
Both immunohistochemical and electrophysiological evidence
support the notion that PVT is activated early after fear

conditioning. PVT displays a significant increase in cFos protein
expression immediately after conditioning,29 and a fraction of PVT
neurons shows increased spontaneous firing rate 2-h post
conditioning.28 However, transient pharmacological inactivation
of the dorsal midline thalamus, including PVT, immediately before
conditioning had no effect on fear memory retrieval assessed 24 h
later.124 This is in contrast with the observation that pre-
conditioning chemogenetic inhibition of CeL-projecting PVT
neurons impairs fear memory when tested at 24 h.29 The
discrepancy between these two studies may be accounted for
by the difference in temporal dynamics of the two manipulations.
Whereas pharmacological inactivation with muscimol is expected
to last 2–3 h following infusion,126 chemogenetic inhibition is
known to have a more lasting effect (~10 h).127 Thus, although
muscimol inactivation of PVT is expected to be restricted to
acquisition-related processes, chemogenetic silencing could
potentially interfere with consolidation processes including the
shifting of circuits. Indeed, the difference between these findings
suggests that recruitment of PVT may occur sometime between 3
and 10 h after conditioning, although additional experiments are
needed.
In agreement with the previous explanation, chemogenetic

inhibition of PVT neurons before fear conditioning does not affect
conditioning-induced synaptic plasticity onto SOM+ CeL neurons –
a recently identified cellular process critical for fear memory
formation41 – at 3 h following conditioning.29 Nonetheless, the
same manipulation does impair this CeL plasticity when assessed
at 24 h following conditioning.29 These results suggest that
ongoing PVT activity following conditioning is required for the
consolidation of CeL plasticity. However, to directly test the
hypothesis that the PVT-CeL pathway is involved in fear memory
consolidation, one would like to selectively inhibit CeL-projecting
PVT neurons for an extended period of time starting immediately
after conditioning.
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Figure 1. Temporal reorganization of the circuits necessary for retrieval of auditory fear memories. Left – retrieval of fear memories at early
time points after conditioning recruits reciprocal activity between the amygdala and PL. During early retrieval, the conditioned tone activates
auditory thalamus inputs to LA. Increased activity in LA neurons activates SOM+ neurons in CeL, thereby disinhibiting CeM output neurons
that mediate fear responses. Increased activity in LA neurons also activates BA neurons interconnected with PL, thereby allowing a top–down
control of fear retrieval. Right – retrieval of fear memories at late time points after conditioning recruits activity in PL neurons projecting to
PVT, as well as PVT neurons projecting to CeL. During late retrieval, the conditioned tone activates auditory cortex inputs to both LA and PL.
Increased activity in PL interneurons inhibits PV+ interneurons, thereby disinhibiting PL neurons projecting to PVT. Increased activity in PVT
neurons activates SOM+ neurons in CeL, and consequently disinhibits CeM output neurons that mediate fear responses. BA, basal amygdala;
cc, corpus callosum; CeL, lateral portion of the central amygdala; CeM, medial portion of the central amygdala; LA, lateral amygdala; PL,
prelimbic cortex; PVT, paraventricular nucleus of the thalamus; PV+, parvalbumin positive neurons; SOM+, somastotatin positive neurons;
SOM−, somatostatin negative neurons; 3 V, third ventricle.
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Consistent with the hypothesis that PVT is recruited for fear
retrieval, the proportion of PVT neurons showing either increased
tone responses or changes in spontaneous firing rate increases
significantly from 2 to 24 h post-conditioning.28 These observa-
tions highlight PVT’s importance for the maintenance, albeit not
for the induction, of fear-evoked synaptic plasticity; although a
potential role of PVT in the acquisition of other types of fear
learning including associative blocking128 and habituation129 has
been recently reported. Together with the finding that PVT
becomes critical for fear memory retrieval 24 h, but not 6 h, after
conditioning,28,29 current evidence indicates that PVT regulates
both the long-term retrieval and maintenance of fear memory. In
contrast, various features of short-term memory such as fear-
induced synaptic plasticity (3 h) and fear retrieval (6 h) appear to
be PVT-independent.
Another important question regarding the time-dependent

recruitment of PVT is whether PVT neurons activated early on
following fear conditioning are different from those activated later
when PVT becomes critical for fear memory retrieval and
maintenance. A partial answer to this question may be found in
the observation that PVT neurons displaying tone responses 2 h
after conditioning are distinct from those neurons displaying tone
responses 24 h after conditioning.28 Nevertheless, to fully address
this question, one would need to systematically compare large
populations of PVT neurons that are activated by fear memory
retrieval at early vs late time points. Currently, a wide range of
novel experimental approaches, including calcium and/or voltage
imaging of identified neuronal ensembles in behaving animals,
would help to tackle this issue.130,131

THE PVT-AMYGDALA CIRCUIT IN FEAR MEMORY REGULATION
Although moderate projections from PVT are found in multiple
amygdala nuclei, CeL is the main amygdala recipient of PVT
efferent fibers.120,121,123 Rats with PVT lesions exhibit a significant
increase in stress-induced cFos expression in the CeL.132 Similarly,
increased cFos expression was observed in CeL when PVT was
inactivated during a fear retrieval session,124 suggesting that PVT
normally serves to suppress the recruitment of CeL neurons. CeL
inhibition is currently thought to be a critical step in the retrieval
of fear memories,44,64 raising the possibility that PVT may control
fear memory retrieval by promoting CeL inhibition. However,
such inhibition is unlikely a result of inhibitory projections from
PVT, as the midline thalamus is largely devoid of GABAergic
neurons133–135 (but see ref. 136).
A closer look at the PVT-CeL microcircuit in mice reveals that

PVT projections preferentially target SOM+ neurons of CeL, and
enhance their excitability.29 In addition, optogenetic activation of
PVT afferents in CeL causes indirect inhibition of SOM− neurons,29

consistent with previous observations that SOM+ CeL neurons are
powerful local inhibitors.41 Thus, activation of SOM+ neurons could
be the mechanism by which PVT promotes CeL local inhibition
and thereby fear retrieval. However, the cellular and molecular
mechanisms underlying PVT’s role in fear memory consolidation
and maintenance are far less clear. A potential answer may be
found in the observation that the brain-derived neurotrophic
factor (BDNF) mediates PVT-CeL communication.29

BDNF is a critical regulator of neuronal plasticity and synaptic
function,137,138 and has been heavily implicated in memory
formation.139 In the fear circuit, BDNF regulates both fear learning
in the BLA140,141 and fear extinction in the mPFC.142,143 A pivotal
role of BDNF has also been reported for the persistence of fear
memories,144,145 suggesting that BDNF signaling in PVT-CeL may
be a potential candidate to mediate the maintenance of
fear memories. Indeed, BDNF-mediated communication between
PVT and CeL neurons is critical for both fear learning and the long-
term expression of fear-induced CeL synaptic plasticity.29 In
addition, because BDNF mediates PVT-CeL neurotransmission,

BDNF may subserve PVT’s function in fear memory maintenance,
although direct evidence for this is still lacking.
As previously mentioned, inactivation of PVT inputs to the CeA

during a 7-day fear memory retrieval session impairs the
subsequent retrieval of fear memory 1 day later.28 This observa-
tion is consistent with the idea that PVT-CeA communication is
essential for the re-consolidation of fear memory. Surprisingly,
however, fear memory re-consolidation is not impaired by intra-
PVT blockade of protein synthesis or mitogen-activated protein
(MAP) kinase signaling,28,146 both critical mediators of neuronal
plasticity.147 A possible explanation for this finding is that,
although PVT may participate in the maintenance and/or re-
consolidation of fear memory within the amygdala, it may not be
a site of plasticity itself. Nevertheless, increased expression of MAP
kinase in the PVT has been associated with impaired retention of
extinction memories in adolescent rats.148 Activation of MAP
kinase signaling in PVT may strengthen the formation of fear
memories, leading to impaired retrieval of extinction memories
during adolescence.
The observation that interfering with either protein synthesis or

MAP kinase activity in the PVT does not affect memory
maintenance argues against the idea that PVT stores fear memory.
Instead, long-term storage for fear memories may be found in
cortical structures, in particular the mPFC as proposed by
others.13,16,119,149 However, why mPFC differentially recruits BLA
and PVT at early vs late time points, respectively, remains unclear.
In the following section we attempt to bring clarity to this issue by
highlighting several known functional distinctions between BLA
and PVT.

WHAT ARE THE ADVANTAGES OF RECRUITING PVT INTO THE
FEAR CIRCUIT?
Anatomical studies have demonstrated that PVT is reciprocally
interconnected with multiple limbic, hypothalamic and cortical
regions, including the mPFC.105,120,121,150 Current understanding
of the functional role of PVT is mainly based on lesion studies,
which placed PVT as part of the brain circuitry controlling both
arousal mediated by negative states and adaptive responses to
stress (for review see refs 151,152). PVT receives dense inputs from
the locus coeruleus (noradrenergic)153 and the lateral hypothala-
mus (orexinergic),105 both regions (and neurotransmitters) directly
implicated in the control of arousal.154 Studies in rodents have
shown that PVT is activated by a variety of physical and
psychological stressors including restraint,155,156 foot shock,157

sleep deprivation158 and forced swim.159,160 In turn, PVT activity
has been shown to modulate neuroendocrine,161,162 auto-
nomic155,163 and behavioral responses to stress.164 Together,
these studies suggest that recruitment of PVT during the
establishment of long-term fear memories may serve to coordi-
nate adaptive responses to stress.
Consistent with this, functional impairments in PVT have been

implicated in maladaptive stress responses such as increased
vulnerability to stress, exacerbated anxiety phenotypes and
depressive-like behaviors such as despair, anhedonia and lack of
motivation.151,165 Notably, pharmacological activation of PVT
produces anxiety and fear-like behavior in rats,166,167 and increa-
sed activity in PVT neurons projecting to the CeA is correlated with
depressive-like behavior in rats,160 reinforcing the idea that dys-
function in PVT circuits may lead to the maladaptive expression of
fear and/or aversive behaviors.
Recent evidence has also implicated PVT in the development of

drug-seeking and addiction-related behaviors,168 suggesting that
dysfunction of this thalamic subregion may be involved in
inappropriate retrieval of reward-associated memories. PVT’s
involvement in the modulation of maladaptive forms of both
aversive and reward processes is intriguing, given that there is a
high comorbidity between mood, anxiety and addiction disorders
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in humans.169 However, it remains to be determined whether a
link exists between PVT dysfunction and the co-expression of
these pathological phenotypes.
Consistent with the idea of coordinating both positive and

negative emotional states, PVT is activated by cues associated
with either food170,171 or drug reward,172–174 as well as by cues
associated with aversive taste175 or fearful stimuli.28,175,176 PVT
sends dense glutamatergic projections to the nucleus accumbens
(NAcc),120,177 a region implicated in the regulation of reward-
seeking behavior.178 Activity in PVT neurons projecting to the
NAcc is correlated with reinstatement of alcohol-seeking behavior
in rats,179 and inactivation of PVT-NAcc projections using either an
optogenetic or a chemogenetic approach attenuates the aversive
symptoms induced by morphine withdrawal in mice.177 Thus, PVT
efferents to NAcc seem to be implicated in the aversive outcome
induced by the absence of reward. In summary, current studies
indicate that PVT is involved in the regulation of stress-related
behaviors with CeA-projecting neurons of PVT driving fear-
induced defensive responses (as discussed above), and NAcc-
projecting neurons driving withdrawal-induced drug-seeking
behavior.177,179,180

Similar to PVT, the BLA has also been implicated in the control
of both fear- and reward-associated behaviors.181,182 However,
whereas BLA’s participation in fear- and reward-associated
behaviors involves a general role in Pavlovian associative
learning,183,184 PVT’s participation in these processes implicates
the coordination of multiple adaptive functions in response to
stress, including the regulation of circadian rhythms, core
temperature and energy balance.155,163,185 Thus, recruitment of
PVT into the retrieval circuit may serve to integrate fear-associated
memories with other adaptive functions that control homeostasis
(Figure 2). For instance, PVT is bidirectionally connected with the
suprachiasmatic nucleus (SCN) of the hypothalamus,121,186,187 the
master circadian pacemaker of the mammalian brain.188 Notably,
PVT displays diurnal variations in neuronal activity,189,190 and
lesions of PVT abolish light-induced phase shifts in circadian
rhythmicity.185 Thus, unlike BLA which lacks a direct connection
with the SCN,191 PVT can regulate circadian rhythms by
modulating the activity of SCN neurons,192 aside from conveying
circadian information from the SCN to other brain regions
including the mPFC, the NAcc and other amygdala nuclei.163

In addition to the proposed model binding PVT to the
integration of stress-related phenotypes, evidence indicate a

more specific role for PVT in controlling susceptibility to
stress.155,164,193 PVT modulates the behavioral and neuroendocrine
responses to a novel stressor following chronic stress,161,194 and
has been referred to as a potential ‘stress-memory’ center of the
brain.164,193 Therefore, unlike BLA, which orchestrates the forma-
tion of associative memories, PVT may serve to control the
magnitude of adaptive and/or maladaptive behaviors in response
to stress. Consistent with this hypothesis, a positive correlation has
been observed between the duration of immobility in the forced
swim test and the activation of CeA-projecting PVT neurons.160 In
addition, direct infusion of BDNF (which mediates PVT-CeA
communication) into the CeA before fear conditioning, enhances
cue-evoked fear expression the following day.29 These results
suggest that PVT may control the magnitude of both fear and
depressive-like behaviors through a circuit dedicated to stress
sensitivity. Within this context, mPFC’s recruitment of PVT could
allow the integration of threat prediction with the subject’s prior
stress history to dictate behavioral outcome.

CONCLUSIONS
The studies reviewed here support the idea that the circuits
mediating the retrieval of fear memories change with the passage
of time following conditioning. We speculate that such reorgani-
zation of fear retrieval circuits may serve various functions,
including: (1) integration of fear memories with other adaptive
responses, via recruitment of PVT; (2) strengthening of fear
memories by increasing BDNF release from PVT to the CeL
neurons; (3) increasing the availability of BLA neurons for future
associations by detaching BLA neurons from the circuits necessary
for retrieval of long-term fear memories. Possible benefits of
time-dependent reorganization of retrieval circuits have been
previously suggested with respect to hippocampal-dependent
memories.195,196 Memories progress from hippocampal to extra-
hippocampal structures to either become more schematized195 or
to avoid interference with previous existing information,196 two
hypotheses that could also be contemplated for hippocampal-
independent memories.
Although much remains to be discovered regarding the

mechanisms mediating the reorganization of retrieval circuits,
the present findings emphasize the importance of investigating, at
the molecular, cellular and circuit levels, how aversive memories
are retrieved across time. Prior studies of retrieval circuits have

mPFC

NAcc

Hypo

PVT

CeA

Arousal  and 
defensive 
strategies

Motivation and 
food reward

Stress responses
Aversive memories 

and anxiety

Figure 2. Recruitment of PVT into the fear circuit may serve to integrate defensive behaviors with adaptive biological responses. The PVT is
reciprocally interconnected with the mPFC, the Hypo and the CeA. In addition, PVT is the major source of inputs to the NAcc. This pattern of
anatomical connections places PVT in a central position to integrate negative emotional memories with adaptive biological responses such as
arousal and goal-directed behaviors (through connections with the mPFC), control of food intake (through projections to the NAcc),
regulation of circadian rhythms and stress-adaptation (through connections with the hypothalamus). CeA, the central nucleus of the
amygdala; Hypo, hypothalamus; mPFC, medial prefrontal cortex; NAcc, nucleus accumbens; PVT, paraventricular nucleus of the thalamus.

Retrieving fear memories, as time goes by…
FH Do Monte et al

6

Molecular Psychiatry (2016), 1 – 10 © 2016 Macmillan Publishers Limited



focused on the 24 h post-conditioning time point. Understanding
the time-dependent restructuring of fear retrieval circuits may be
relevant to the treatment of post-traumatic stress disorder, given
that these patients seek medical assistance weeks or even months
after the initial trauma.197 The advance of optogenetic tools,
combined with calcium imaging and recording from identified
neurons, provides a unique opportunity to understand the
temporal dynamic of memory reorganization. In addition, human
imaging studies focusing on the temporal modifications of
retrieval circuits may inform us as to how aversive memories
persist over time, providing alternative targets for pharmacologi-
cal treatment in patients with anxiety disorders.
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