Emergency Radiology Case: 30M with a blunt traumatic aortic injury

Steven Ajluni Jr. February 5th, 2020 **RAD 4001** Dr. Manickam Kumaravel

The University of Texas **Health Science Center at Houston**

Medical School

Clinical History

- 30M presented to the ED after MVC single vehicle rollover, nonrestraint, unknown LOC at scene, CPR x2 min
- GCS 13 patient combative and intoxicated
- Pt intubated due to hypertension 2/2 agitation
- Pt found to have aortic pseudoaneurysm with extravasation on CT w/contrast

Vitals

- On presentation to the ED
 HR: 118 bpm
 - RR: 28 breaths/min
 - SpO2: 100% (15L NRB mask)
 - BP: 183/82

- After intubation in the ED
 - HR: 101 bpm
 - RR: 20 breaths/min
 - SpO2: 100%
 - BP: 99/59

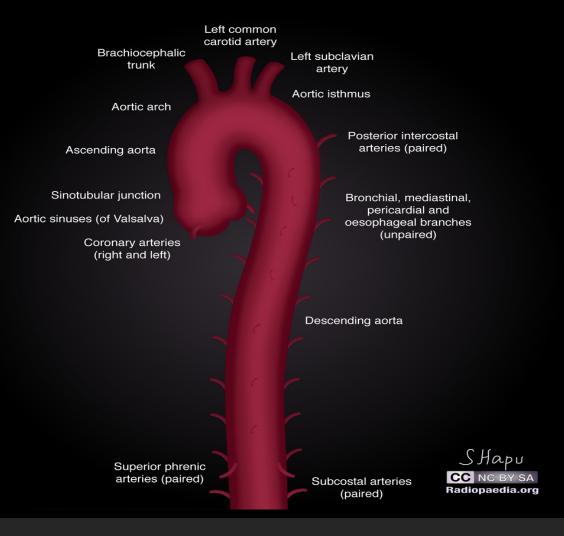
Physical Exam

- General: intubated and sedated
- GCS: 6T
- Eyes: PERRLA
- Neck: Cervical collar
- CV: RRR
- Pulm: Mechanical vent
- Abdomen: soft, non-tender, non-distended, R flank abrasions
- Extremities: no edema, motor sensation grossly intact, R elbow laceration
- Skin: normal temperature; abrasions R hip
- Vascular: palpable distal pulses in all extremities

Initial Management

- Pt had many potentially injuries due to major MVC so the team started broad
- Initial imaging was a Chest/Abdomen/pelvis CT w/ contrast
- Followed by CT Head w/o contrast, CT Face w/o contrast, CT C-Spine w/o contrast

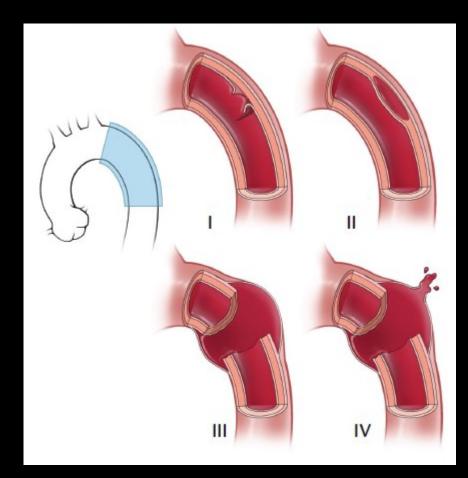
ACR Appropriateness Criteria


• Major Blunt Trauma

<u>Variant 7:</u> Major blunt trauma. Hemodynamically stable. Suspected chest trauma. Initial imaging.		
Procedure	Appropriateness Category	Relative Radiation Level
CT chest with IV contrast	Usually Appropriate	ଉତ୍ତ
CT whole body with IV contrast	Usually Appropriate	ଚଚଚଚ
CTA chest with IV contrast	Usually Appropriate	ଡଡଡ
Radiography trauma series	Usually Appropriate	ଡଡଡ
CT chest without IV contrast	May Be Appropriate	ଚଚଚ
CT whole body without IV contrast	May Be Appropriate	ଉତ୍ତତ
US FAST scan chest abdomen pelvis	May Be Appropriate (Disagreement)	0
CT chest without and with IV contrast	Usually Not Appropriate	ଜନ୍ଦନ
US chest	Usually Not Appropriate	0
MRI chest without and with IV contrast	Usually Not Appropriate	0
MRI chest without IV contrast	Usually Not Appropriate	0

Mechanism of Injury

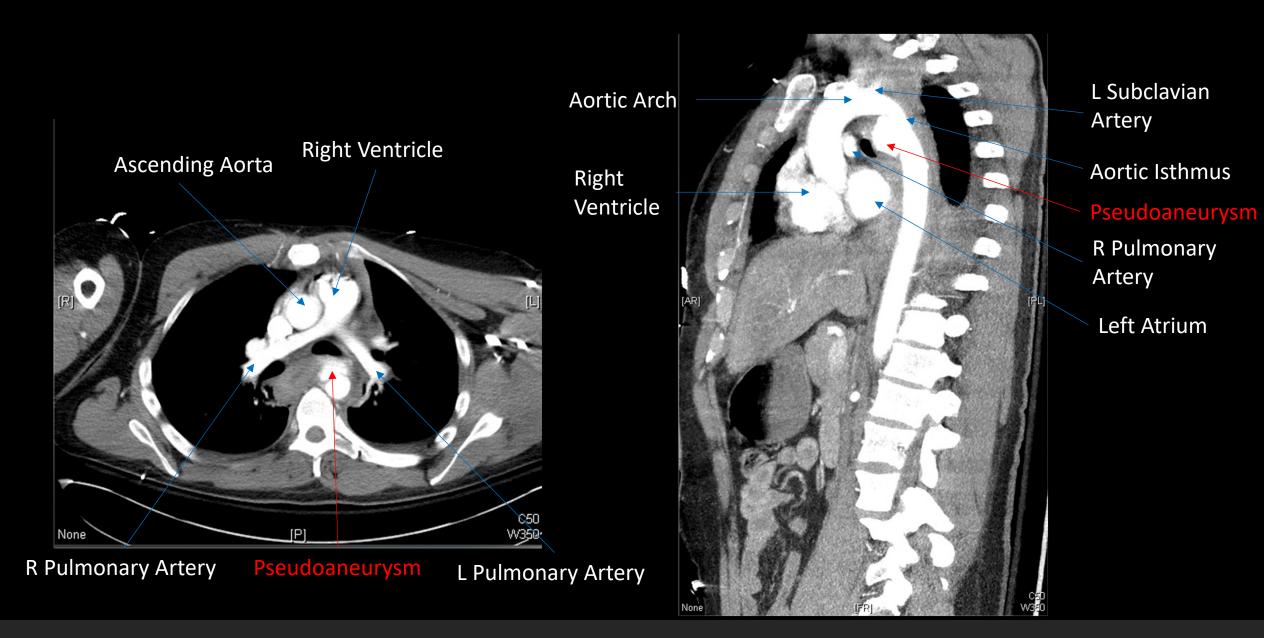
- Blunt Traumatic Aortic Injury normally results in injuries at sites where the aorta is relatively **fixed** compared to other structures
 - Aortic root
 - Aortic isthmus (most common) branch point between mobile ascending aorta and relatively fixed descending aorta
- Various mechanisms
 - Osseous pinch compression of aorta between spine and manubrium
 - Rapid deceleration in the lateral or antero-posterior direction
 - Shearing forces tethered sites of the aorta are relatively immobile
 - Water-hammer effect sudden increase in intrathoracic pressure


Normal Aortic Anatomy

McGovern Medical School

Blunt Aortic Trauma Injury – Grading

- Grading is determined by CT or TEE
 - Type I: Intimal Tear
 - Type II: Intramural hematoma
 - Type III: Pseudoaneurysm
 - Type IV: Rupture (eg, periaortic hematoma, free rupture)
- Grading is based on degree of vascular injury in the vessel wall



CT Chest w/ contrast

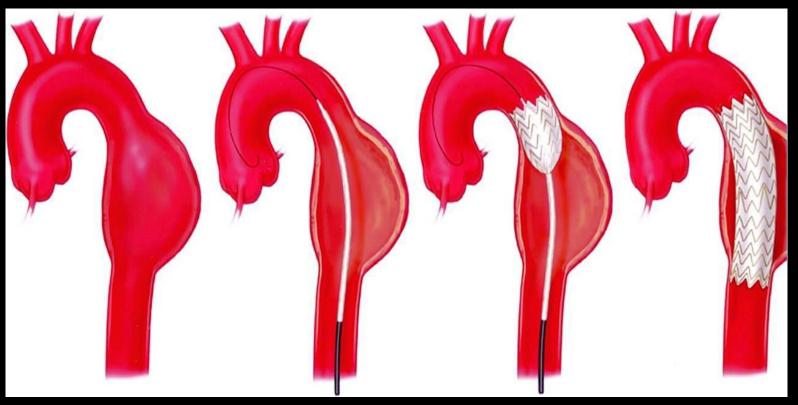
McGovern Medical School

McGovern Medical School

Initial Management – Grade 3 BTAI

- Manage stress on vessel wall with antihypertensive agents
 - SBP <100mmHg
 - HR <100bpm
- Hemodynamically stable
 - Grade I nonoperative management with aggressive BP and HR management
 - Grade II, III, IV operative repair with aggressive BP/HR management
- Hemodynamically unstable
 - Urgent operative repair

Open vs Endovascular Repair


- Open thoracotomy incision to gain access to the diseased portion of the aorta and replacement with a prosthetic tube graft
 - Open is preferred when endovascular is contraindicated
- Endovascular modular graft placement delivered via femoral artery catheter
 - 20-30% of thoracic stent-graft devices are not suited for narrow aortas or the acute angle of the aortic arch, so their use depends on the age of the patient and location of injury
 - TEE or IVUS may help guide endovascular stent sizing and placement

Anatomic criteria for endograft repair — The following criteria are mandatory for thoracic endograft placement:

- Aortic diameter at proximal landing zone ≥17.5 mm
- Adequate proximal and distal landing zones (≥2 cm in length)
- · Minimal calcification at the fixation sites
- · Focal aortic lesion
- Location in the descending thoracic aorta
- · No significant tortuosity of the thoracic aorta
- · Minimal intraluminal thrombus
- Adequate diameter and quality of access vessels (sheath size depends upon the graft chosen)


Thoracic Endovascular Thoracic Aortic Repair - TEVAR

- A catheter with a graft attached is threaded up the descending aorta and deployed once correct position is identified
- Mean BP is reduced to 60s which helps prevent graft from prematurely deploying and moving distally

Potential Complication of TEVAR

- Perioperative mortality 1.9-3.1%
- Spinal cord ischemia 3-11% (comparable to open)
 - Extent of thoracic aortic coverage is greatest risk factor for spinal cord ischemia
- Cerebrovascular ischemia 4-8%
 - Proximity of graft to carotid increase risk for embolic complications
- Migration of the graft caudally can occur 1-2.8%
 - Device infolding/collapse can occur especially in young trauma pts

McGovern Medical School

Imaging Cost at Memorial Hermann

- Chest Xray 1View \$683.00
- CT Chest w/ contrast \$3936.25
- CT Pelvis/Abdomen w/ contrast \$7998.00
- CT Head, Maxillofacial, Cervical Spine w/o contrast \$11,623.00 (3157 + 4409 + 4057)
- Total Imaging Cost = \$24,240.25 (Excluding fees for EMS, medications, medical equipment, nursing, physicians, surgical interventions, etc.)

Current status of patient

- Pt moved to STICU after emergent TEVAR
- Pt was extubated and subsequently developed quadriplegia due to worsening epidural hemorrhage → underwent emergent C2-C7 laminectomy with evacuation of epidural hematoma with neurosurgery
- Remains in the STICU in critical condition (multiple fractures, AKI, ARDS, quadriplegia, etc.)
- Follow-up CT w/ contrast one month post-op to evaluate stability at the graft site

Take Home Points – Case Summary

- If there is blunt trauma, suspect damage to the aorta at the isthmus
- The best way to evaluate for a BTAI is with a CT Chest w/ contrast
- Surgical repair for Grade II, III, IV or with hemodynamic instability
 - Endovascular preferred if the patient's anatomy and type of injury is appropriate

References

https://www.ncbi.nlm.nih.gov/books/NBK459337/

https://www.uptodate.com/contents/management-of-blunt-thoracic-aorticinjury?topicRef=15185&source=see_link

https://www.uptodate.com/contents/surgical-and-endovascular-repair-of-blunt-thoracic-aorticinjury?sectionName=ENDOVASCULAR%20REPAIR&topicRef=117119&anchor=H1081750615&source=see_ link#H1081750615

https://www.uptodate.com/contents/endovascular-repair-of-the-thoracic-aorta#H144779840

Questions?