Traumatic Aortic Injury

Olivia Drummond 11/13/19

Diagnostic Radiology: RAD4001

Dr. Latifa Sanhaji

Clinical History

- 26 year old woman in MVC with no seatbelt.
 - Initially responsive to voice, but became unresponsive
 - Intubated for airway protection
 - Hypotensive 66/46, Tachycardic to 120s
 - BP and HR responsive to 2 units whole blood
 - Fast exam negative
 - Deformity of Right leg
 - L hemothorax- chest tube placed with output of 200 cc blood
- Unknown past medical history
- Initial workup- CXR, Abdominal XR, Right leg XRs, CT head without contrast, CT CAP with contrast, CT cervical spine without contrast

Chest X-Ray

- Chest X-Ray, AP supine, 1 view, 11/9/19 0800
- ET tube 1.3 cm above the carina
- Left hemothorax with chest tube in place
- Widened upper mediastinal silhouette

CT Chest/Abdomen/Pelvis W/ Contrast

CT Chest/Abdomen/Pelvis W/ Contrast

Key Findings

- Major Trauma
- Hypotension
- Aortic Transection of proximal descending aorta not involving the left subclavian with mediastinal hematoma- Grade III (aortic transection with pseudoaneurysm)
- Left pleural hemorrhage- hemothorax with chest tube in place
- Small bilateral pneumothoraces
- Hepatic laceration without active extravasation
- Multiple skeletal injuries

Differential Diagnosis of Widened Mediastinum on CXR

- Traumatic Aortic Injury
 - Aortic Aneurysm or Dissection
- Vascular Anomalies
- Masses- lung or mediastinal
- Thymus
- Lymphadenopathy
- Technical factors- rotation, poor inspiration¹

Discussion

- In a patient in a major trauma, a widened mediastinum is extremely concerning for aortic injury, especially in the setting of hypotension
- Injury can progress to free rupture which is almost always fatal
- Grading Blunt Aortic Injury
 - Grade I: A- intimal tear B- intramural hematoma
 - Grade II: intimal injury with periaortic hematoma
 - Grade III: A- aortic transection with pseudoaneurysm B- multiple aortic injuries
 - Grade IV: free rupture
- Management
 - Grade I can be managed conservatively with B-blockers for BP control and antiplatelets to prevent thrombus formation
 - Grade II should have repeat CTA within 48-72 hours to evaluate for need for repair
 - Grade III should be repaired urgently, but can be delayed if other injuries are more pressing
 - Grade IV should go straight to open surgery, but has a 100% mortality in some studies
 - For Grade II and higher, successful repair leads to better outcomes 2,3

Discussion

Repair

- Open surgery or TEVAR (thoracic endovascular aortic repair)
- TEVAR is limited by the anatomy of the location of the injury
 - Multiple injuries and injuries involving branches of the aorta may be better suited to open surgery
- Recovery time from TEVAR compared to open surgery is much shorter
- TEVAR is associated with repair mortality rates of 1.9 to 2.1%, compared with 5.7 to 11.7% with open repair (all cases, not just trauma) ⁷
- Post TEVAR patient needs lifelong imaging follow up with CTA or MRA to look for leaks ^{5,7}

Final Diagnosis

 Grade III Blunt Aortic Injury: Aortic transection of proximal descending aorta with pseudoaneurysm

Hypotension/Shock

Treatment

- In the setting of hypotension with an aortic injury, the patient was taken emergently to the OR where she underwent TEVAR (thoracic endovascular aortic repair)
- Post-op imaging shows stent in place in descending aorta
- Patient still in STICU, however aortic injury stable
- Mortality for patients with blunt aortic injury is very high
 - 23% die before or during triage
 - Mortality for patients who underwent TEVAR due to blunt aortic injury was 18% ⁴
- Further Work up
 - Treat other injuries
 - Patient also underwent multiple surgeries for skeletal injuries (C2 fracture, femur fracture, radial fracture)
 - Liver Laceration not actively bleeding

ACR appropriateness Criteria

<u>Variant 1:</u> Major blunt trauma. Hemodynamically unstable. Initial imaging.

Procedure	Appropriateness Category	Relative Radiation Level	
Radiography trauma series	Usually Appropriate	***	
US FAST scan chest abdomen pelvis	Usually Appropriate	0	
CT whole body with IV contrast	May Be Appropriate	\$\$\$\$	
CT whole body without IV contrast	May Be Appropriate	\$\$\$\$	
MRI abdomen and pelvis without and with IV contrast	Usually Not Appropriate	0	
MRI abdomen and pelvis without IV contrast	Usually Not Appropriate	0	

<u>Variant 2:</u> Major blunt trauma. Hemodynamically stable. Not otherwise specified. Initial imaging.

Procedure	Appropriateness Category	Relative Radiation Level	
CT whole body with IV contrast	Usually Appropriate	888	
Radiography trauma series	Usually Appropriate	⊕⊕⊕	
US FAST scan chest abdomen pelvis	Usually Appropriate	0	
CT whole body without IV contrast	May Be Appropriate	8886	
Fluoroscopy retrograde urethrography	Usually Not Appropriate	⊕⊕⊕	
MRI abdomen and pelvis without and with IV contrast	Usually Not Appropriate	0	
MRI abdomen and pelvis without IV contrast	Usually Not Appropriate	0	

Clinical Condition: Blunt Chest Trauma Variant 1: First-line evaluation. High-energy mechanism.					
Radiologic Procedure	Rating	Comments	RRL*		
X-ray chest	9	Chest x-ray and CT/CTA are complementary examinations.	9		
CT chest with IV contrast	9	Ideally, this procedure should be performed with CTA. Chest x-ray and CT/CTA are complementary examinations.	***		
CTA chest with IV contrast	9	Chest x-ray and CT/CTA are complementary examinations.	***		
CT chest without IV contrast	5		***		
US chest	5		0		
CT chest without and with IV contrast	2		888		
MRI chest without and with IV contrast	2		О		
MRI chest without IV contrast	1		0		
Rating Scale: 1,2,3 Usually not appropriate; 4,5,6 May be appropriate; 7,8,9 Usually appropriate					

• In this major trauma case, CXR and CT chest with contrast were very appropriate studies

Cost

Procedure	Total Cost	Cost to Insured Patient	Cost to Uninsured Patient
CXR, 1 view	\$683	\$250	\$246
CT Chest w/ contrast	\$3,936	\$432	\$1,417
CT Abd/Pelvis w/ contrast	\$7,998	\$480	\$2,879
TEVAR	\$150,000	\$348	\$60,000

https://www.memorialhermann.org/patients-caregivers/pricing-estimates-and-information/

Take Home Points

- Trauma with widened mediastinumsuspect aortic injury
- Blunt aortic injury has very high mortality rates that improve with successful repair
- TEVAR leads to better mortality outcomes and shorter recovery time when compared with open surgery

References

- 1. https://radiopaedia.org/
- 2. Reddy KN, Matatov T, Doucet LD, Heldmann M, Zhao CX, Zhang WW. Grading system modification and management of blunt aortic injury. Chin Med J (Engl). 2013 Feb;126(3):442-5.
- 3. Shalhub S, Starnes BW, Tran NT, Hatsukami TS, Lundgren RS, Davis CW, Quade S, Gunn M. Blunt abdominal aortic injury. J Vasc Surg. 2012 May;55(5):1277-85.
- 4. Arthurs ZM, Starnes BW, Sohn VY, et al. Functional and survival outcomes in traumatic blunt thoracic aortic injuries: An analysis of the National Trauma Databank. J Vasc Surg. 2009 Apr;49(4):988-94.
- 5. https://acsearch.acr.org/
- 6. https://www.memorialhermann.org/patients-caregivers/pricing-estimates-and-information/
- 7. Nation DA, Wang GJ. TEVAR: Endovascular Repair of the Thoracic Aorta. *Semin Intervent Radiol*. 2015;32(3):265–271.

