

Disruptive Technology in Healthcare: Artificial Intelligence and Robots

Jiajie Zhang, PhD

Dean & Professor Glassell Family Foundation Distinguished Chair in Informatics Excellence School of Biomedical Informatics

Outline

- ➤ The Age of Acceleration
- ➤ The Age of Disruption
- The AI Revolution
- > Examples: Disruptive Technology in Healthcare

Conclusion

Today – The Age of Acceleration

© Jiajie Zhang 2018

Three Drivers for the AI Revolution

The Many "Revolutions" of Artificial Intelligence

Speak now

This Is Us

this is a strategically

this is a strategic retreat

this is a strategic Retreat session footage

this is a strategic Retreat session for the University

this is a strategic Retreat session for the University of Texas Health Science Center at Houston

Autonomous Vehicle

(NVidia CES 2018 Demo)

- 1.25 million lives could be saved per year
- 157 hours commute time per person per year
- \$150 B fuel cost saving in US in one year

https://www.youtube.com/watch?v=68F-UUU_Ff4

Impact of AI on Global GDP (PwC)

Source: PwC analysis

Impact of AI on Healthcare (McKinsey)

Highest-ranked use cases, based on survey responses	Use case type	Impact	Data richness		
Diagnose known diseases from scans, biopsies, audio, and other data	Predictive analytics		1.4 0.3		
Predict personalized health outcomes to optimize recommended treatment	Radical personalization	13	2 1.3		
Optimize labor staffing and resource allocation to reduce bottlenecks	Resource allocation	0.7	0.7		
Identify fraud, waste, and abuse patterns in diverse clinical and operations data	Discover new trends/ anomalies	0.6	0.3		
Predict individual hospital admission rates using historical and real-time data	Forecasting	0.5	0.7		
Triage patient cases during hospital admission using patient data, audio, and video	Predictive analytics	0.5	0.3		

Examples of Disruptive Technology in Healthcare

- Imaging
- Natural Language Processing (NLP)
- Computational Phenotyping
- Prediction
- Computational Biomarker
- Population Health
- Precision Medicine
- Medical Education
- Physician Robot Companion

Al to medicine today is like microscope to life sciences in 1600s:

REEXAMINE AND REDISCOVER EVERYTHING ANEW

Imaging

December 13, 2016

Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs

Varun Gulshan, PhD¹; Lily Peng, MD, PhD¹; Marc Coram, PhD¹; <u>et al</u>

» Author Affiliations | Article Information

JAMA. 2016;316(22):2402-2410. doi:10.1001/jama.2016.17216

Natural Language Processing Comparative Effectiveness Research

Hua Xu et al. (2015). Validating drug repurposing signals using electronic health records: a case study of metformin associated with reduced cancer mortality. Journal of American Medical Informatics Association, 22 (1), 179–191

Survival Probability

Computational Phenotyping from EHR Data

31,816 Patients x 169 Diagnoses x 471 Medications

Hyperlipidemia Moderate Hypertensio		Uncomplicated Diabetes	Mild Hypertension	Chronic Respiratory Inflammation/Infection		
Phenotype 1 (41.6% of patients)	Phenotype 2 (31.5% of patients)	Phenotype 3 (17.6% of patients)	Phenotype 4 (31.1% of patients)	Phenotype 5 (36.7% of patients)		
Other Endocrine, Metabolic, and Nutritional Disorders	Hypertension Beta Blockers Cardio-Selective	Diabetes with No or Unspecified Complications	Hypertension ACE Inhibitors	Other Ear, Nose, Throat, and Mouth Disorders Viral and Unspecified Pneumonia, Pleurisy		
HMG CoA Reductase Inhibitors Intestinal Cholesterol Absortpion	Angiotensin II Receptor Antagonists	Sulfonylureas Biguanides Diagnostic Tests	Thiazides and Thiazide-Like Diuretics	Significant Ear, Nose, and Throat Disorders Cough/Cold/Allergy Combinations		
Fibric Acid Derivatives Antihyperlipidemics - Combinations	Potassium	Insulin Sensitizing Agents Diabetic Supplies		Fluoroquinolones Sympathomimetics		
Nicotinic Acid Derivatives Bile Acid Sequestrants	Alpha-Beta Blockers Vasodilators	Meglitinide Analogues Antidiabetic Combinations		Penicillin Combinations Antitussives		
Oil Soluble Vitamins				Glucocorticosteroids Tetracyclines		
				Anti-infective Misc Combinations Clarithromycin		
				Cephalosporins - 2nd Generation Cephalosporins - 1st Generation Expectorants		

Limestone: High-throughput candidate	phenotype
generation via tensor factorization	
Joyce C. Ho ^a ^A [⊠] , Joydeep Ghosh ^a , Steve R. Steinhubl ^b , Walter F. Bradley A. Malin ^{d, f} , Jimeng Sun ^g	Stewart ^c , Joshua C. Denny ^d , ^e , Journal of Biomedical Informatics Volume 52, December 2014, Pages 199-211

Prediction 1: Temporal Disease Trajectories (6.2 million patients in Denmark)

Prediction 2: Risk Calculators from EHR Data

Age	65		Age	65	years	
Sex	Female Male		Sex	Female	Male	
Smoker	No	Yes	Smoker	No	Yes	
Total cholesterol	300	mg/dL 与	Total cholesterol	150	mg/dL (
HDL cholesterol	20	mg/dL 与	HDL cholesterol	60	mg/dL 띀	
Systolic BP	160	mm Hg	Systolic BP	120	mm Hg	
Blood pressure being treated with medicines	No	Yes	Blood pressure being treated with medicines	No	Yes	
47.4 % 10-year risk of MI or death.	Unhealthy Pe	erson	7.3 % 10-year risk of MI or death.	Healthy Per	son	

Can machine-learning improve cardiovascular risk prediction using routine clinical data?

Stephen F. Weng 💿 🖾, Jenna Reps 💿, Joe Kai 🗰, Jonathan M. Garibaldi 🗰, Nadeem Qureshi 🕷

Published: April 4, 2017 • https://doi.org/10.1371/journal.pone.0174944

Prediction 3: Sepsis

BMJ Open

Research

2017

Performance (AUC)

- Status Quo: 0.85
- Ongoing: 0.92

Effect of a machine learning-based Respiratory severe sepsis prediction algorithm on patient survival and hospital length of stay: a randomised clinical trial

> David W Shimabukuro,¹ Christopher W Barton,² Mitchell D Feldman.³ Samson J Mataraso,^{4,5} Ritankar Das⁶

Ongoing Project at UTHealth (Jiang, Dai, Murphy, Patel, Zhang, et al.)

Computational Biomarker: Sensors

Sleep Pattern Monitor

Vital Sign Tracker

Wireless Trackers .

Aria[™] Wi-Fi Smart Scale ∙

Ingestible Sensors (Proteus Digital)

Contact Lens for Glucose

Apple Watch

Fertility Thermometer

Bio Stamp for Vital Signs

Computational Biomarker: AF Detection

Presented by MDedge	CAREER Search Q & REGISTER OR LOGIN
Clinical Neurology News.	
≡ FULL MENU CME Conference Coverage Daily News Podcast Views	Movement Disorders Epilepsy & Seizures
Top news from ECTRIMS 2018	
A Current Snapshot of MS Dis Where We Are and Where We	agnosis: Need to Be
Smartphone device beat	
Holter for post-stroke AF	THE ONLY THERAPY APPROVED TO TREAT BOTH RMS AND PPMS
detection	INDICATION AND IMPORTANT SAFETY INFORMATION
Publish date: October 18, 2018 By Mitchel L. Zoler; Clinical Neurology News	Contraindications OCREVUS is contraindicated in patients with active hepatitis B virus infection and in patients with a history of life-threatening infusion reaction to OCREVUS.

Computational Biomarker: Typing for Parkinson's

Parkinson's Disease Typing Phenotype

0.5

0.4

0.3

0.2

0.1

0.0

-0.1

Physical keyboards-based motor score Giancardo et al. 2016

Giancardo et al., Psychomotor Impairment Detection via Finger Interactions with a Computer Keyboard During Natural Typing. Nature Scientific Reports, 2015.

Computational Biomarker: HRV

Heart Rate Variability, Deep Learning, and Disease Prediction

- Diabetes: 0.85 AUC
- Sleep apnea: 0.80 AUC
- Hypertension: 0.80 AUC
- High cholesterol: 0.67 AUC

Ballinger B, et al. DeepHeart: Semisupervised sequence learning for cardiovascular risk prediction. Presented at: AAAI Conference on Artificial Intelligence; Feb. 2-7, 2018; New Orleans.

Population Health

- Chronic Disease Registry at UT Physicians

Hwang, Bernstam, Johnson at UTHealth

Precision Medicine

- Cancer Clinical Trials Matching System

- UT MD Anderson and UTHealth
 - Dr. Funda Meric-Bernstam and Dr. Elmer Bernstam
- Using patient's genetic and clinical information to select the most appropriate clinical trials

Medical Education

Test Result

- Total Points: 600
- Passing Points: 360
- Robot: 456
- Top 5% among human takers

What is in the "Brain"

- Dozens of medical textbooks
- 2 million medical records
- 400,000 literature

								EUROPE AF 文 双语 França		
HOME	CHI	NA WORLD	BUSINESS	LIFESTYLE	CULTURE	TRAVEL	WATCHTHIS	SPORTS	OPINION	RE
Busine	SS	Macro	Companies	Indust	ries Te	chnology	Motoring	China	Data	Fir

Home / Business / Technology

Chinese robot becomes world's first machine to pass medical exam

By Ma Si and Cheng Yu | chinadaily.com.cn | Updated: 2017-11-10 15:32

f y in +

iFlytek's AI-enabled robot sits the test of China's national medical licensing examination. [Photo provided to China Daily]

Conclusion - Human Technology Integration

Growth in facts affecting provider decisions over time juxtaposed against human cognitive capacity.

(Graph is from William Stead)

Thank you!

At UTHealth School of Biomedical Informatics,

We Are

