跳过导航,转到内容
News from The University of Texas Health Science Center at Houston

Stories from The University of Texas Health Science Center at Houston (UTHealth Houston)

导航和搜索

Whole blood exchange could offer disease-modifying therapy for Alzheimer’s disease, study finds

A team led by Claudio Soto, PhD, performed a series of whole blood exchange treatments to partially replace blood from mice with Alzheimer’s disease-causing amyloids in their brains with blood from healthy mice. (Photo by UTHealth Houston)
A team led by Claudio Soto, PhD, performed a series of whole blood exchange treatments to partially replace blood from mice with Alzheimer’s disease-causing amyloids in their brains with blood from healthy mice. (Photo by UTHealth Houston)

A novel, disease-modifying therapy for Alzheimer’s disease may involve the whole exchange of blood, which effectively decreased the formation of amyloid plaque in the brains of mice, according to a new study fromUTHealth Houston.

A research team led by senior authorClaudio Soto,博士,与第一作者合作,与麦戈文医学院的神经病学系教授Akihiko Urayama, PhD, associate professor in the department, performed a series of whole blood exchange treatments to partially replace blood from mice exhibiting Alzheimer’s disease-causing amyloid precursor proteins with complete blood from healthy mice of the same genetic background. The results of the study were published today inMolecular Psychiatry.

“This article provides a proof-of-concept for the utilization of technologies commonly used in medical practice, such as plasmapheresis or blood dialysis, to ‘clean’ blood from Alzheimer’s patients, reducing the buildup of toxic substances in the brain,” said Soto, director of the George and Cynthia Mitchell Center for Alzheimer’s Disease and Related Brain Disorders and the Huffington Foundation Distinguished Chair in Neurology at McGovern Medical School. “This approach has the advantage that the disease can be treated in the circulation instead of in the brain.”

Previous studies by Soto and other UTHealth Houston researchers have shown that the misfolding, aggregation, and buildup of amyloid beta proteins in the brain plays a central role in Alzheimer’s disease. Therefore, preventing and removing misfolded protein aggregates is considered a promising treatment for the disease.

然而,阿尔茨海默病的治疗long been complicated, due to the difficulty in delivering therapeutic agents across the blood-brain barrier. Through their latest research, Urayama, Soto, and others discovered that manipulating circulating components in Alzheimer’s disease could be the key to solving this issue.

“Blood vessels in the brain are classically considered the most impermeable barrier in the body,” Urayama said. “We have been aware that the barrier is at the same time a very specialized interface between the brain and the systemic circulation.”

After multiple blood transfusions, the researchers found that the development of cerebral amyloid plaques in a transgenic mice model of Alzheimer’s disease was reduced by 40% to 80%. This reduction also resulted in improved spatial memory performance in aged mice with the amyloid pathology, and lowered the rates of plaque growth over time.

While the exact mechanism by which this blood exchange reduces amyloid pathology and improves memory is currently unknown, there are multiple possibilities. One possible explanation is that lowering amyloid beta proteins in the bloodstream may help facilitate the redistribution of the peptide from the brain to the periphery. Another theory is that blood exchange somehow prevents amyloid beta influx, or inhibits the re-uptake of cleared amyloid beta, among other potential explanations.

但是,无论与血液交换治疗相关的作用机制如何,研究表明,阿尔茨海默氏病疗法的靶标可能位于外围。

Other co-authors affiliated with the Mitchell Center included Ines Moreno-Gonzalez, PhD; Diego Morales-Scheihing, PhD; and Sandra Pritzkow, PhD. Vineetkumar Kaharat, BSc, a former student at UTHealth School of Public Health, also contributed. Soto and Urayama are also faculty members with The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences.

该研究由辛西娅和乔治·米切尔基金会和美国国立卫生研究院授予R01AG059321资助。

Media Inquiries: 713-500-3030

site var = uth

Baidu