Biography

负责制定和存储记忆的分子

我们的记忆形成并存储在神经系统中的细胞中。这些记忆如何在整个人的一生中编码和保留是该实验室正在研究的基本问题。尽管我们关心通过在突触中发送化学信号来确定神经元如何进行沟通,但我们更感兴趣地确定这种交流如何随经验而变化(通常称为突触可塑性的过程)。识别负责这些变化的机制将在我们了解记忆的形成和存储的尝试中很重要。

细胞内Ca增加2+, activation of calmodulin and activation of Ca2+/calmodulin-dependent protein kinases, and other enzymes form a biochemical pathway that can lead to short-term and long-term changes in synapse structure and function. However, few attempts have been made to experimentally address an integrated cellular model that encompasses when, where and how activation of each of these components leads to functional alterations. We are in the process of characterizing each step in this pathway utilizing biochemical, molecular biological and optical techniques applied to bothin vitroand原位楷模。

我们的目标需要理解在实验条件下每个分子在该途径中扩散的细胞分布和限制,这将导致功能变化,例如突触可塑性。为了解决这个问题,将神经元注入荧光标记的分子,其分布和扩散速率通过光学成像监测。多通道共聚焦显微镜还为我们提供了对神经元中每个分子的相对分布的高分辨率理解。

利用分子,生化和免疫细胞化学技术的其他研究正在尝试发现如何与其他细胞内蛋白相关的钙调蛋白和钙调蛋白依赖性酶如何实现其适当的细胞内定位。在分子水平上,我们必须了解钙调蛋白如何与靶酶相互作用以及哪些生理因素可以调节该关联。为了解决这个问题,我们表达钙调蛋白和钙调蛋白依赖性酶,在定义的位点发生突变,净化和荧光标记它们,然后应用荧光技术来监测关联和解离速率。我们希望从这些研究中的每一项中巩固结果,以提供一定的图片,说明突触可塑性如何在分子和细胞水平上发生。

Research Information

Long-term potentiation (LTP) and long-term depressions (LTD) at cortical synapses both require Ca2+ influx through NMDA receptors in the post synaptic cell and the activation of calmodulin (CaM). Importantly, other proteins at synapses (like RC3) can bind to CaM and alter its Ca2+-binding properties. Through unknown mechanisms, Ca2+/CaM then activate either CaM-dependent protein phosphatase (PP2B also known as calcineurin) or Ca2+/CaM-dependent protein kinase II (CaMKII). Depending on this choice, the synapse either gets weaker (LTD) or stronger (LTP). Once activated, PP2B and CaMKII can influence the physiological properties of the synapse by phosphorylating/dephosphorylating the AMPA subtype of glutamate receptors to change their properties or influence AMPA receptor number by affecting protein trafficking. We are investigating how the Ca2+ signal is decoded by this biochemical network and how these activated enzymes lead to long-term plasticity.

出版物

出版信息

  • Heberle,足总。, Doktrova M。斯科特,H。L., Skinkle, A.D., Waxham, M.N., and Levental, I. (accepted, in press). Direct label-free imaging of nanodomains in biomimetic and biological membranes by cryogenic electron microscopy. Proc. Natl. Acad. Sci. USA
  • Symons, J., Cho, K.-J., Chang, J., Du, G., Waxham, M.N., Hancock, J.F., Levental, I. and Levental, K.R. (2020). Lipidomic atlas of mammalian cell membranes reveals hierarchical variation induced by culture conditions, subcellular membranes, and cell lineages. Soft Matter. DOI: 10.1039/D0SM00404A.
  • Maynard,M.E.,Redell,J.,Kobori,N.,Underwood,E.,Fischer,T.D.,Hood,K.N.,Laroche,V.,M N Waxham,M.N.和Dash,P.D。(2020)。PTEN诱导的激酶1(PINK1)的丧失减少了海马酪氨酸羟化酶并损害学习和记忆。经验。神经。1月; 323:113081。doi:10.1016/j.expneurol.2019.113081。
  • Ezerski,J.C.,Zhang,P.,Jennings,N.C.,Waxham,M.N。和M.S.(2020)。根据圆形二色性的反卷曲光谱,对本质上无序肽的分子动力学整体精致。Biophys J. 2020 2月25日。PII:S0006-3495(20)30164-8。doi:10.1016/j.bpj.2020.02.015。
  • Liman,J.,Bueno,C.,Eliaz,Y.(2020)ARP2/3复合物在塑造分支肌球蛋白网络的动力学和结构中的作用。Proc。纳特。学院科学。美国。
  • Wang,Q。,Chen,M.,Schafer,N.P.,Bueno,C。Song,S.S.,Hudmon,A。Wolynes,P.G.,Waxham,M.N。和M.S.(2019)钙/钙调蛋白依赖性激酶II - 肌动蛋白组件及其在树突状棘中对钙调蛋白的动态调节。Proc。纳特。学院科学。美国。
  • 斯科特(H.或者,为什么您的大型单层囊泡并不是真正的单层。生物物理J.
  • Gireud-Goss,M.,Reyes,S.,Wilson,M.,Farley,M.,Memarzadeh,K.,Srinivasan,S.,Sirisaengtaksin,N.,Yamashita,S.,Tsunoda,S.,Lang,F.F。,Waxham,M.N.,Bean,A.J。(2018)不同的机制可以从晚期内体/多囊体中向内或向外萌芽。经验。细胞res。372,1-15。https://www.sciencedirect.com/science/article/pii/S001448271830778X?via%3Dihub
  • Fischer, D., Dash, P.K., Liu, J. and Waxham, M.N. (2018) Morphology of Mitochondria in Spatially Restricted Axons Revealed by Cryo-Electron Tomography. PloS Biology. e2006169.https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2006169
  • 帕克(Park)。Elife。E39514。https://elifesciences.org/articles/39514