Biography

Valentin Dragoi received his bachelor’s degree in computer engineering from the Technical University of Iasi (Romania) in 1989. He subsequently received his Ph.D. degree from Duke University in 1997. His thesis was focused on learning and adaptive behavior and on computational neuroscience. As a postdoctoral fellow in Dr. Mriganka Sur’s laboratory in the Department of Brain and Cognitive Sciences and the Picower Center for Learning and Memory at MIT, Valentin investigated the neural circuits of cortical adaptation in behaving animals. In 2003, he became an Assistant Professor at the McGovern Medical School at Univ. of Texas, Houston, where he currently holds the Levit Distinguished Professorship in Neuroscience. Valentin has been awarded a string of awards including the STARs Award from the UT System (2019), NIH BRAIN Awards (2015-present), NIH Director’s Pioneer Award (2010), NIH EUREKA Award (2009), James S. McDonnell Award (2005), Pew Scholars Award (2004), etc.

Research Information

CORTICAL CIRCUITS FOR INFORMATION PROCESSING AND DECISION MAKING

尽管在理解单细胞和分子级过程的特性方面取得了重大进展,但大脑皮层在电路水平上的运作方式仍在继续保持神秘状态。在过去的几十年中,神经科学家在神经结构中观察到了显着的规律性:皮质区域通过前馈,横向和反馈连接进行通信。显然,了解皮质交流的功能原理是了解整个皮质如何运作的关键。我的实验室已经开始寻求了解脑皮质中感觉信息和执行控制网络背后的原理。我们的远程目标是了解皮质种群功能的状态和经验依赖性变化的机制,以及神经元分布式网络的协调如何影响行为。为了实现这些目标,我们将电生理(在受约束和自由移动的非人类灵长类动物中的多电极记录),光遗传学和电刺激,行为方法和计算方法相结合。我们的基本策略是帮助开发新的工具,以调节和记录受约束和不受约束动物的皮质回路之间的种群活动,然后应用这些技术来检查皮质回路跨皮的神经计算和编码原理。

There are three major research directions in my lab:

  • State and experience-dependent changes in cortical networks underlying behavioral decisions.One of our long-standing interests is to understand the relationship between the activity of populations of cortical cells and behavioral decisions. Our working hypothesis is that the accuracy of sensory representation and intracortical communication determines the accuracy of behavioral responses.

  • 皮质电路的光学遗传操纵。用于基因输送的病毒工具允许根据细胞定位和连通性靶向细胞的新型光遗传学方法。靶向回路的生理解剖,主要是通过去极化或超极化的视紫红蛋白在小鼠脑中非常成功,但在非人类灵长类动物(NHP)和人脑中的使用量仍然有限。我们刚刚开始启动S系列项目,以操纵其反应,然后检查对感知决策的影响,以测试皮质电路的功能。

  • 自由移动动物的复杂行为的实时网络相互作用。越来越多的理解,在约束实验室钻机中研究大脑对我们了解脑电路功能的能力构成严重限制。为了克服这些局限性,我们构建了一个无线系统,使我们能够在人群水平上研究皮质动力学,而非人类灵长类动物则在自然环境中自由移动。现在可以研究在实验钻机中难以或不可能观察到的现象。

出版物

出版信息

  • Andrei AR, Pojoga S, Janz R, and Dragoi V. (2019) Integration of cortical population signals for visual perception,自然通讯,8月23日; 10(1):3832。doi:10.1038/s41467-019-11736-2。

  • Nigam, S, Pojoga, S, and Dragoi V. (2019) Synergistic coding of visual information in columnar networks,神经元, Oct 23; 104(2):402-411.e4. doi: 10.1016/j.neuron.2019.07.006.

  • Shahidi,N,Andrei,A,Hu,M和Dragoi V.(2019)皮质尖峰活动的高阶配位调节感知精度。自然神经科学, Jul;22(7):1148-1158 2019, doi: 10.1038/s41593-019-0406-3.

  • Gutnisky D,Beaman,C,Lew,S。和Dragoi V.(2017)皮质状态改善感觉歧视。eLife12月23日; 6。PII:E29226。doi:10.7554/elife.29226。

  • Beaman,C。,Eagleman SL和Dragoi V.(2017)在干燥的皮层状态下,感觉编码的精度和感知性能得到了提高。大自然社区ications2017 Nov 3;8(1):1308. doi: 10.1038/s41467-017-01030-4

  • Wang Y和Dragoi V.(2015)在视觉皮质网络中快速学习。eLife,doi: 10.7554/eLife.08417 [Epub ahead of print]

  • Hansen BJ,Chelaru MI和Dragoi V.(2012)层状皮质电路的变异性,神经元76, 590-602.

  • Eagleman S和Dragoi V.(2012)视觉皮质网络中图像序列的清醒重播。Proc。纳特。学院科学。美国,109:19450-5。

  • Hansen BJ和Dragoi V.(2011)。视觉皮层中的层状特异性自适应同步。Proc。纳特。学院科学。美国, 108:10720-10725.

  • Gutnisky D,Hansen B,Iliescu B和Dragoi V.(2009)。注意力限制基于曝光的学习过程中视觉处理的可塑性。Current Biology,19,555-560。

  • Chelaru M. I. and Dragoi V. (2008). Efficient coding in heterogeneous neuronal populations.Proc。纳特。学院科学。美国,105,16344-16349。

  • Gutnisky D和Dragoi诉(2008)。自适应编码啊f visual information in neural populations.自然, 452, 220-224.